Webb, William, 1967-
Wireless communications : the future / William Webb. - 1 PDF (xx, 253 pages) : illustrations.
Includes bibliographical references and index.
Preface xvii -- Acknowledgments xix -- 1 Introduction 1 -- 1.1 Resources for wireless communications 3 -- 1.2 Shannon's theory 3 -- 1.3 Three challenges 4 -- 1.4 Digital modulation versus coding 5 -- 1.5 Philosophy to combat interference 6 -- 1.6 Evolution of processing strategy 7 -- 1.7 Philosophy to exploit two-dimensional random fields 7 -- 1.8 Cellular: Concept, Evolution, and 5G 8 -- 1.9 The structure of this book 10 -- 1.10 Repeatedly used abbreviations and math symbols 10 -- Problems 12 -- References 12 -- 2 Mathematical Background 14 -- 2.1 Introduction 14 -- 2.2 Congruence mapping and signal spaces 14 -- 2.3 Estimation methods 19 -- 2.3.1 Maximum likelihood estimation (MLE) 20 -- 2.3.2 Maximum a posteriori estimation 21 -- 2.4 Commonly used distributions in wireless 21 -- 2.4.1 Chi-square distributions 21 -- 2.4.2 Gamma distribution 25 -- 2.4.3 Nakagami distribution 26 -- 2.4.4 Wishart distribution 26 -- 2.5 The calculus of variations 28 -- 2.6 Two inequalities for optimization 29 -- 2.6.1 Inequality for Rayleigh quotient 29 -- 2.6.2 Hadamard inequality 29 -- 2.7 Q-function 30 -- 2.8 The CHF method and its skilful applications 32 -- 2.8.1 Gil-Pelaez's lemma 32 -- 2.8.2 Random variables in denominators 32 -- 2.8.3 Parseval's theorem 33 -- 2.9 Matrix operations and differentiation 33 -- 2.9.1 Decomposition of a special determinant 33 -- 2.9.2 Higher order derivations 33 -- 2.9.3 Kronecker product 34 -- 2.10 Additional reading 34 -- Problems 34 -- References 35 -- 3 Channel Characterization 37 -- 3.1 Introduction 37 -- 3.2 Large-scale propagation loss 38 -- 3.2.1 Free-space propagation 39 -- 3.2.2 Average large-scale path loss in mobile 40 -- 3.2.3 Okumura's model 40 -- 3.2.4 Hata's model 42 -- 3.2.5 JTC air model 42 -- 3.3 Lognormal shadowing 43 -- 3.4 Multipath characterization for local behavior 44 -- 3.4.1 An equivalent bandwidth 44 -- 3.4.2 Temporal evolution of path coefficients 49 -- 3.4.3 Statistical description of local fluctuation 50 -- 3.4.4 Complex Gaussian distribution 50. 3.4.5 Nakagami fading 51 -- 3.4.6 Clarke / Jakes model 52 -- 3.5 Composite model to incorporate multipath and shadowing 53 -- 3.6 Example to illustrate the use of various models 54 -- 3.6.1 Static design 54 -- 3.6.2 Dynamic design 55 -- 3.6.3 Large-scale design 56 -- 3.7 Generation of correlated fading channels 56 -- 3.7.1 Rayleigh fading with given covariance structure 56 -- 3.7.2 Correlated Nakagami fading 57 -- 3.7.3 Complex correlated Nakagami channels 62 -- 3.7.4 Correlated lognormal shadowing 62 -- 3.7.5 Fitting a lognormal sum 64 -- 3.8 Summary 65 -- 3.9 Additional reading 66 -- Problems 66 -- References 68 -- 4 Digital Modulation 70 -- 4.1 Introduction 70 -- 4.2 Signals and signal space 71 -- 4.3 Optimal MAP and ML receivers 72 -- 4.4 Detection of two arbitrary waveforms 74 -- 4.5 MPSK 77 -- 4.5.1 BPSK 77 -- 4.5.2 QPSK 79 -- 4.5.3 MPSK 81 -- 4.6 M-ary QAM 85 -- 4.7 Noncoherent scheme / differential MPSK 88 -- 4.7.1 Differential BPSK 88 -- 4.7.2 Differential MPSK 89 -- 4.7.3 Connection to MPSK 89 -- 4.8 MFSK 90 -- 4.8.1 BFSK with coherent detection 90 -- 4.9 Noncoherent MFSK 92 -- 4.10 Bit error probability versus symbol error probability 93 -- 4.10.1 Orthogonal MFSK 93 -- 4.10.2 Square M-QAM 93 -- 4.10.3 Gray-mapped MPSK 94 -- 4.11 Spectral efficiency 96 -- 4.12 Summary of symbol error probability for various schemes 97 -- 4.13 Additional reading 98 -- Problems 98 -- References 102 -- 5 Minimum Shift Keying 103 -- 5.1 Introduction 103 -- 5.2 MSK 104 -- 5.3 de Buda's approach 105 -- 5.3.1 The basic idea and key equations 105 -- 5.4 Properties of MSK signals 106 -- 5.5 Understanding MSK 108 -- 5.5.1 MSK as FSK 108 -- 5.5.2 MSK as offset PSK 109 -- 5.6 Signal space 109 -- 5.7 MSK power spectrum 110 -- 5.8 Alternative scheme / differential encoder 113 -- 5.9 Transceivers for MSK signals 115 -- 5.10 Gaussian-shaped MSK 116 -- 5.11 Massey's approach to MSK 117 -- 5.11.1 Modulation 117 -- 5.11.2 Receiver structures and error performance 117 -- 5.12 Summary 119 -- Problems 119. References 120 -- 6 Channel Coding 121 -- 6.1 Introduction and philosophical discussion 121 -- 6.2 Preliminary of Galois fields 123 -- 6.2.1 Fields 123 -- 6.2.2 Galois fields 124 -- 6.2.3 The primitive element of GF(q) 124 -- 6.2.4 Construction of GF(q) 124 -- 6.3 Linear block codes 126 -- 6.3.1 Syndrome test 129 -- 6.3.2 Error-correcting capability 132 -- 6.4 Cyclic codes 134 -- 6.4.1 The order of elements: a concept in GF(q) 134 -- 6.4.2 Cyclic codes 136 -- 6.4.3 Generator, parity check, and syndrome polynomial 137 -- 6.4.4 Systematic form 138 -- 6.4.5 Syndrome and decoding 140 -- 6.5 Golay code 141 -- 6.6 BCH codes 141 -- 6.6.1 Generating BCH codes 142 -- 6.6.2 Decoding BCH codes 143 -- 6.7 Convolutional codes 146 -- 6.7.1 Examples 146 -- 6.7.2 Code generation 147 -- 6.7.3 Markovian property 148 -- 6.7.4 Decoding with hard-decision Viterbi algorithm 150 -- 6.7.5 Transfer function 152 -- 6.7.6 Choice of convolutional codes 155 -- 6.7.7 Philosophy behind decoding strategies 156 -- 6.7.8 Error performance of convolutional decoding 160 -- 6.8 Trellis-coded modulation 162 -- 6.9 Summary 166 -- Problems 166 -- References 170 -- 7 Diversity Techniques 171 -- 7.1 Introduction 171 -- 7.2 Idea behind diversity 173 -- 7.3 Structures of various diversity combiners 174 -- 7.3.1 MRC 174 -- 7.3.2 EGC 175 -- 7.3.3 SC 176 -- 7.4 PDFs of output SNR 176 -- 7.4.1 MRC 176 -- 7.4.2 EGC 178 -- 7.4.3 SC 178 -- 7.5 Average SNR comparison for various schemes 179 -- 7.5.1 MRC 179 -- 7.5.2 EGC 180 -- 7.5.3 SC 181 -- 7.6 Methods for error performance analysis 182 -- 7.6.1 The chain rule 182 -- 7.6.2 The CHF method 183 -- 7.7 Error probability of MRC 183 -- 7.7.1 Error performance in nondiversity Rayleigh fading 183 -- 7.7.2 MRC in i.i.d. Rayleigh fading 185 -- 7.7.3 MRC in correlated Rayleigh fading 187 -- 7.7.4 Pe for generic channels 188 -- 7.8 Error probability of EGC 189 -- 7.8.1 Closed-form solution to order-3 EGC 189 -- 7.8.2 General EGC error performance 191 -- 7.8.3 Diversity order of EGC 192. 7.9 Average error performance of SC in Rayleigh fading 193 -- 7.9.1 Pure SC 193 -- 7.9.2 Generalized SC 195 -- 7.10 Performance of diversity MDPSK systems 196 -- 7.10.1 Nondiversity MDPSK in Rayleigh fading 196 -- 7.10.2 Remarks on use of the chain rule 199 -- 7.10.3 Linear prediction to fit the chain rule 199 -- 7.10.4 Alternative approach for diversity MDPSK 200 -- 7.11 Noncoherent MFSK with diversity reception 201 -- 7.12 Summary 203 -- Problems 204 -- References 206 -- 8 Processing Strategies for Wireless Systems 209 -- 8.1 Communication problem 209 -- 8.2 Traditional strategy 210 -- 8.3 Paradigm of orthogonality 211 -- 8.4 Turbo processing principle 211 -- Problems 213 -- References 213 -- 9 Channel Equalization 214 -- 9.1 Introduction 214 -- 9.2 Pulse shaping for ISI-free transmission 215 -- 9.3 ISI and equalization strategies 216 -- 9.4 Zero-forcing equalizer 217 -- 9.4.1 Orthogonal projection 217 -- 9.4.2 ZFE 219 -- 9.4.3 Equivalent discrete ZFE receiver 221 -- 9.5 MMSE linear equalizer 225 -- 9.6 Decision-feedback equalizer (DFE) 227 -- 9.7 SNR comparison and error performance 229 -- 9.8 An example 230 -- 9.9 Spectral factorization 233 -- 9.10 Summary 234 -- Problems 234 -- References 236 -- 10 Channel Decomposition Techniques 238 -- 10.1 Introduction 238 -- 10.2 Channel matrix of ISI channels 239 -- 10.3 Idea of channel decomposition 239 -- 10.4 QR-decomposition-based Tomlinson / Harashima equalizer 240 -- 10.5 The GMD equalizer 242 -- 10.6 OFDM for time-invariant channel 243 -- 10.6.1 Channel SVD 243 -- 10.6.2 OFDM: a multicarrier modulation technique 244 -- 10.6.3 PAPR and statistical behavior of OFDM 246 -- 10.6.4 Combating PAPR 247 -- 10.7 Cyclic prefix and circulant channel matrix 248 -- 10.8 OFDM receiver 251 -- 10.9 Channel estimation 251 -- 10.10 Coded OFDM 252 -- 10.11 Additional reading 252 -- Problems 252 -- References 254 -- 11 Turbo Codes and Turbo Principle 257 -- 11.1 Introduction and philosophical discussion 257 -- 11.1.1 Generation of random-like long codes 258. 11.1.2 The turbo principle 259 -- 11.2 Two-device mechanism for iteration 259 -- 11.3 Turbo codes 261 -- 11.3.1 A turbo encoder 261 -- 11.3.2 RSC versus NRC 261 -- 11.3.3 Turbo codes with two constituent RSC encoders 264 -- 11.4 BCJR algorithm 266 -- 11.5 Turbo decoding 270 -- 11.6 Illustration of turbo-code performance 270 -- 11.7 Extrinsic information transfer (EXIT) charts 272 -- 11.8 Convergence and fixed points 276 -- 11.9 Statistics of LLRs 277 -- 11.9.1 Mean and variance of LLRs 277 -- 11.9.2 Mean and variance of hard decision 277 -- 11.10 Turbo equalization 278 -- 11.11 Turbo CDMA 281 -- 11.12 Turbo IDMA 283 -- 11.13 Summary 283 -- Problems 284 -- References 287 -- 12 Multiple-Access Channels 289 -- 12.1 Introduction 289 -- 12.2 Typical MA schemes 291 -- 12.3 User space of multiple-access 292 -- 12.3.1 User spaces for TDMA 293 -- 12.3.2 User space for CDMA 294 -- 12.3.3 User space for MC-CDMA 294 -- 12.3.4 MC-DS-CDMA 295 -- 12.3.5 User space for OFDMA 296 -- 12.3.6 Unified framework for orthogonal multiaccess schemes 297 -- 12.4 Capacity of multiple-access channels 298 -- 12.4.1 Flat fading 299 -- 12.4.2 Frequency-selective fading 300 -- 12.5 Achievable MI by various MA schemes 301 -- 12.5.1 AWGN channel 301 -- 12.5.2 Flat-fading MA channels 304 -- 12.6 CDMA-IS-95 306 -- 12.6.1 Forward link 306 -- 12.6.2 Reverse link 308 -- 12.7 Processing gain of spreading spectrum 310 -- 12.8 IS-95 downlink receiver and performance 310 -- 12.9 IS-95 uplink receiver and performance 317 -- 12.10 3GPP-LTE uplink 318 -- 12.11 m-Sequences 321 -- 12.11.1 PN sequences of a shorter period 322 -- 12.11.2 Conditions for m-sequence generators 322 -- 12.11.3 Properties of m-sequence 323 -- 12.11.4 Ways to generate PN sequences 324 -- 12.12 Walsh sequences 327 -- 12.13 CAZAC sequences for LTE-A 327 -- 12.14 Nonorthogonal MA schemes 329 -- 12.15 Summary 330 -- Problems 330 -- References 334 -- 13 Wireless MIMO Systems 337 -- 13.1 Introduction 337 -- 13.2 Signal model and mutual information 338. 13.3 Capacity with CSIT 339 -- 13.4 Ergodic capacity without CSIT 340 -- 13.4.1 i.i.d. MIMO Rayleigh channels 341 -- 13.4.2 Ergodic capacity for correlated MIMO channels 341 -- 13.5 Capacity: asymptotic results 344 -- 13.5.1 Asymptotic capacity with large MIMO 344 -- 13.5.2 Large SNR approximation 345 -- 13.6 Optimal transceivers with CSIT 346 -- 13.6.1 Optimal eigenbeam transceiver 347 -- 13.6.2 Distributions of the largest eigenvalue 348 -- 13.6.3 Average symbol-error probability 350 -- 13.6.4 Average mutual information of MIMO-MRC 350 -- 13.6.5 Average symbol-error probability 351 -- 13.7 Receivers without CSIT 352 -- 13.8 Optimal receiver 352 -- 13.9 Zero-forcing MIMO receiver 353 -- 13.10 MMSE receiver 355 -- 13.11 VBLAST 357 -- 13.11.1 Alternative VBLAST based on QR decomposition 358 -- 13.12 Space / time block codes 359 -- 13.13 Alamouti codes 359 -- 13.13.1 One receive antenna 359 -- 13.13.2 Two receive antennas 360 -- 13.14 General space / time codes 362 -- 13.14.1 Exact pairwise error probability 363 -- 13.15 Information lossless space / time codes 365 -- 13.16 Multiplexing gain versus diversity gain 365 -- 13.16.1 Two frameworks 366 -- 13.16.2 Derivation of the DMT 367 -- 13.16.3 Available DFs for diversity 368 -- 13.17 Summary 370 -- Problems 370 -- References 374 -- 14 Cooperative Communications 377 -- 14.1 A historical review 377 -- 14.2 Relaying 378 -- 14.3 Cooperative communications 379 -- 14.3.1 Cooperation protocols 380 -- 14.3.2 Diversity analysis 382 -- 14.3.3 Resource allocation 384 -- 14.4 Multiple-relay cooperation 385 -- 14.4.1 Multi-relay over frequency-selective channels 386 -- 14.4.2 Optimal matrix structure 389 -- 14.4.3 Power allocation 390 -- 14.5 Two-way relaying 395 -- 14.5.1 Average power constraints 397 -- 14.5.2 Instantaneous power constraint 399 -- 14.6 Multi-cell MIMO 400 -- 14.7 Summary 401 -- Problems 401 -- References 402 -- 15 Cognitive Radio 405 -- 15.1 Introduction 405 -- 15.2 Spectrum sensing for spectrum holes 406 -- 15.3 Matched filter versus energy detector 407. 15.3.1 Matched-filter detection 407 -- 15.3.2 Energy detection 408 -- 15.4 Detection of random primary signals 410 -- 15.4.1 Energy-based detection 411 -- 15.4.2 Maximum likelihood ratio test 412 -- 15.4.3 Eigenvalue ratio test 413 -- 15.5 Detection without exact knowledge of (Sv(B2n 414 -- 15.5.1 LRT with (Sv(B2n 414 -- 15.5.2 LRT without noise-level reference 415 -- 15.6 Cooperative spectrum sensing 416 -- 15.7 Standardization of CR networks 418 -- 15.8 Experimentation and commercialization of CR systems 418 -- Problems 419 -- References 420 -- Index 423.
Restricted to subscribers or individual electronic text purchasers.
Mode of access: World Wide Web
9781119113263
10.1002/9781119113263 doi
Wireless communication systems.
Wireless communication systems--Forecasting.
Electronic books.
TK5103.2 / .W44 2007eb
621.384
Wireless communications : the future / William Webb. - 1 PDF (xx, 253 pages) : illustrations.
Includes bibliographical references and index.
Preface xvii -- Acknowledgments xix -- 1 Introduction 1 -- 1.1 Resources for wireless communications 3 -- 1.2 Shannon's theory 3 -- 1.3 Three challenges 4 -- 1.4 Digital modulation versus coding 5 -- 1.5 Philosophy to combat interference 6 -- 1.6 Evolution of processing strategy 7 -- 1.7 Philosophy to exploit two-dimensional random fields 7 -- 1.8 Cellular: Concept, Evolution, and 5G 8 -- 1.9 The structure of this book 10 -- 1.10 Repeatedly used abbreviations and math symbols 10 -- Problems 12 -- References 12 -- 2 Mathematical Background 14 -- 2.1 Introduction 14 -- 2.2 Congruence mapping and signal spaces 14 -- 2.3 Estimation methods 19 -- 2.3.1 Maximum likelihood estimation (MLE) 20 -- 2.3.2 Maximum a posteriori estimation 21 -- 2.4 Commonly used distributions in wireless 21 -- 2.4.1 Chi-square distributions 21 -- 2.4.2 Gamma distribution 25 -- 2.4.3 Nakagami distribution 26 -- 2.4.4 Wishart distribution 26 -- 2.5 The calculus of variations 28 -- 2.6 Two inequalities for optimization 29 -- 2.6.1 Inequality for Rayleigh quotient 29 -- 2.6.2 Hadamard inequality 29 -- 2.7 Q-function 30 -- 2.8 The CHF method and its skilful applications 32 -- 2.8.1 Gil-Pelaez's lemma 32 -- 2.8.2 Random variables in denominators 32 -- 2.8.3 Parseval's theorem 33 -- 2.9 Matrix operations and differentiation 33 -- 2.9.1 Decomposition of a special determinant 33 -- 2.9.2 Higher order derivations 33 -- 2.9.3 Kronecker product 34 -- 2.10 Additional reading 34 -- Problems 34 -- References 35 -- 3 Channel Characterization 37 -- 3.1 Introduction 37 -- 3.2 Large-scale propagation loss 38 -- 3.2.1 Free-space propagation 39 -- 3.2.2 Average large-scale path loss in mobile 40 -- 3.2.3 Okumura's model 40 -- 3.2.4 Hata's model 42 -- 3.2.5 JTC air model 42 -- 3.3 Lognormal shadowing 43 -- 3.4 Multipath characterization for local behavior 44 -- 3.4.1 An equivalent bandwidth 44 -- 3.4.2 Temporal evolution of path coefficients 49 -- 3.4.3 Statistical description of local fluctuation 50 -- 3.4.4 Complex Gaussian distribution 50. 3.4.5 Nakagami fading 51 -- 3.4.6 Clarke / Jakes model 52 -- 3.5 Composite model to incorporate multipath and shadowing 53 -- 3.6 Example to illustrate the use of various models 54 -- 3.6.1 Static design 54 -- 3.6.2 Dynamic design 55 -- 3.6.3 Large-scale design 56 -- 3.7 Generation of correlated fading channels 56 -- 3.7.1 Rayleigh fading with given covariance structure 56 -- 3.7.2 Correlated Nakagami fading 57 -- 3.7.3 Complex correlated Nakagami channels 62 -- 3.7.4 Correlated lognormal shadowing 62 -- 3.7.5 Fitting a lognormal sum 64 -- 3.8 Summary 65 -- 3.9 Additional reading 66 -- Problems 66 -- References 68 -- 4 Digital Modulation 70 -- 4.1 Introduction 70 -- 4.2 Signals and signal space 71 -- 4.3 Optimal MAP and ML receivers 72 -- 4.4 Detection of two arbitrary waveforms 74 -- 4.5 MPSK 77 -- 4.5.1 BPSK 77 -- 4.5.2 QPSK 79 -- 4.5.3 MPSK 81 -- 4.6 M-ary QAM 85 -- 4.7 Noncoherent scheme / differential MPSK 88 -- 4.7.1 Differential BPSK 88 -- 4.7.2 Differential MPSK 89 -- 4.7.3 Connection to MPSK 89 -- 4.8 MFSK 90 -- 4.8.1 BFSK with coherent detection 90 -- 4.9 Noncoherent MFSK 92 -- 4.10 Bit error probability versus symbol error probability 93 -- 4.10.1 Orthogonal MFSK 93 -- 4.10.2 Square M-QAM 93 -- 4.10.3 Gray-mapped MPSK 94 -- 4.11 Spectral efficiency 96 -- 4.12 Summary of symbol error probability for various schemes 97 -- 4.13 Additional reading 98 -- Problems 98 -- References 102 -- 5 Minimum Shift Keying 103 -- 5.1 Introduction 103 -- 5.2 MSK 104 -- 5.3 de Buda's approach 105 -- 5.3.1 The basic idea and key equations 105 -- 5.4 Properties of MSK signals 106 -- 5.5 Understanding MSK 108 -- 5.5.1 MSK as FSK 108 -- 5.5.2 MSK as offset PSK 109 -- 5.6 Signal space 109 -- 5.7 MSK power spectrum 110 -- 5.8 Alternative scheme / differential encoder 113 -- 5.9 Transceivers for MSK signals 115 -- 5.10 Gaussian-shaped MSK 116 -- 5.11 Massey's approach to MSK 117 -- 5.11.1 Modulation 117 -- 5.11.2 Receiver structures and error performance 117 -- 5.12 Summary 119 -- Problems 119. References 120 -- 6 Channel Coding 121 -- 6.1 Introduction and philosophical discussion 121 -- 6.2 Preliminary of Galois fields 123 -- 6.2.1 Fields 123 -- 6.2.2 Galois fields 124 -- 6.2.3 The primitive element of GF(q) 124 -- 6.2.4 Construction of GF(q) 124 -- 6.3 Linear block codes 126 -- 6.3.1 Syndrome test 129 -- 6.3.2 Error-correcting capability 132 -- 6.4 Cyclic codes 134 -- 6.4.1 The order of elements: a concept in GF(q) 134 -- 6.4.2 Cyclic codes 136 -- 6.4.3 Generator, parity check, and syndrome polynomial 137 -- 6.4.4 Systematic form 138 -- 6.4.5 Syndrome and decoding 140 -- 6.5 Golay code 141 -- 6.6 BCH codes 141 -- 6.6.1 Generating BCH codes 142 -- 6.6.2 Decoding BCH codes 143 -- 6.7 Convolutional codes 146 -- 6.7.1 Examples 146 -- 6.7.2 Code generation 147 -- 6.7.3 Markovian property 148 -- 6.7.4 Decoding with hard-decision Viterbi algorithm 150 -- 6.7.5 Transfer function 152 -- 6.7.6 Choice of convolutional codes 155 -- 6.7.7 Philosophy behind decoding strategies 156 -- 6.7.8 Error performance of convolutional decoding 160 -- 6.8 Trellis-coded modulation 162 -- 6.9 Summary 166 -- Problems 166 -- References 170 -- 7 Diversity Techniques 171 -- 7.1 Introduction 171 -- 7.2 Idea behind diversity 173 -- 7.3 Structures of various diversity combiners 174 -- 7.3.1 MRC 174 -- 7.3.2 EGC 175 -- 7.3.3 SC 176 -- 7.4 PDFs of output SNR 176 -- 7.4.1 MRC 176 -- 7.4.2 EGC 178 -- 7.4.3 SC 178 -- 7.5 Average SNR comparison for various schemes 179 -- 7.5.1 MRC 179 -- 7.5.2 EGC 180 -- 7.5.3 SC 181 -- 7.6 Methods for error performance analysis 182 -- 7.6.1 The chain rule 182 -- 7.6.2 The CHF method 183 -- 7.7 Error probability of MRC 183 -- 7.7.1 Error performance in nondiversity Rayleigh fading 183 -- 7.7.2 MRC in i.i.d. Rayleigh fading 185 -- 7.7.3 MRC in correlated Rayleigh fading 187 -- 7.7.4 Pe for generic channels 188 -- 7.8 Error probability of EGC 189 -- 7.8.1 Closed-form solution to order-3 EGC 189 -- 7.8.2 General EGC error performance 191 -- 7.8.3 Diversity order of EGC 192. 7.9 Average error performance of SC in Rayleigh fading 193 -- 7.9.1 Pure SC 193 -- 7.9.2 Generalized SC 195 -- 7.10 Performance of diversity MDPSK systems 196 -- 7.10.1 Nondiversity MDPSK in Rayleigh fading 196 -- 7.10.2 Remarks on use of the chain rule 199 -- 7.10.3 Linear prediction to fit the chain rule 199 -- 7.10.4 Alternative approach for diversity MDPSK 200 -- 7.11 Noncoherent MFSK with diversity reception 201 -- 7.12 Summary 203 -- Problems 204 -- References 206 -- 8 Processing Strategies for Wireless Systems 209 -- 8.1 Communication problem 209 -- 8.2 Traditional strategy 210 -- 8.3 Paradigm of orthogonality 211 -- 8.4 Turbo processing principle 211 -- Problems 213 -- References 213 -- 9 Channel Equalization 214 -- 9.1 Introduction 214 -- 9.2 Pulse shaping for ISI-free transmission 215 -- 9.3 ISI and equalization strategies 216 -- 9.4 Zero-forcing equalizer 217 -- 9.4.1 Orthogonal projection 217 -- 9.4.2 ZFE 219 -- 9.4.3 Equivalent discrete ZFE receiver 221 -- 9.5 MMSE linear equalizer 225 -- 9.6 Decision-feedback equalizer (DFE) 227 -- 9.7 SNR comparison and error performance 229 -- 9.8 An example 230 -- 9.9 Spectral factorization 233 -- 9.10 Summary 234 -- Problems 234 -- References 236 -- 10 Channel Decomposition Techniques 238 -- 10.1 Introduction 238 -- 10.2 Channel matrix of ISI channels 239 -- 10.3 Idea of channel decomposition 239 -- 10.4 QR-decomposition-based Tomlinson / Harashima equalizer 240 -- 10.5 The GMD equalizer 242 -- 10.6 OFDM for time-invariant channel 243 -- 10.6.1 Channel SVD 243 -- 10.6.2 OFDM: a multicarrier modulation technique 244 -- 10.6.3 PAPR and statistical behavior of OFDM 246 -- 10.6.4 Combating PAPR 247 -- 10.7 Cyclic prefix and circulant channel matrix 248 -- 10.8 OFDM receiver 251 -- 10.9 Channel estimation 251 -- 10.10 Coded OFDM 252 -- 10.11 Additional reading 252 -- Problems 252 -- References 254 -- 11 Turbo Codes and Turbo Principle 257 -- 11.1 Introduction and philosophical discussion 257 -- 11.1.1 Generation of random-like long codes 258. 11.1.2 The turbo principle 259 -- 11.2 Two-device mechanism for iteration 259 -- 11.3 Turbo codes 261 -- 11.3.1 A turbo encoder 261 -- 11.3.2 RSC versus NRC 261 -- 11.3.3 Turbo codes with two constituent RSC encoders 264 -- 11.4 BCJR algorithm 266 -- 11.5 Turbo decoding 270 -- 11.6 Illustration of turbo-code performance 270 -- 11.7 Extrinsic information transfer (EXIT) charts 272 -- 11.8 Convergence and fixed points 276 -- 11.9 Statistics of LLRs 277 -- 11.9.1 Mean and variance of LLRs 277 -- 11.9.2 Mean and variance of hard decision 277 -- 11.10 Turbo equalization 278 -- 11.11 Turbo CDMA 281 -- 11.12 Turbo IDMA 283 -- 11.13 Summary 283 -- Problems 284 -- References 287 -- 12 Multiple-Access Channels 289 -- 12.1 Introduction 289 -- 12.2 Typical MA schemes 291 -- 12.3 User space of multiple-access 292 -- 12.3.1 User spaces for TDMA 293 -- 12.3.2 User space for CDMA 294 -- 12.3.3 User space for MC-CDMA 294 -- 12.3.4 MC-DS-CDMA 295 -- 12.3.5 User space for OFDMA 296 -- 12.3.6 Unified framework for orthogonal multiaccess schemes 297 -- 12.4 Capacity of multiple-access channels 298 -- 12.4.1 Flat fading 299 -- 12.4.2 Frequency-selective fading 300 -- 12.5 Achievable MI by various MA schemes 301 -- 12.5.1 AWGN channel 301 -- 12.5.2 Flat-fading MA channels 304 -- 12.6 CDMA-IS-95 306 -- 12.6.1 Forward link 306 -- 12.6.2 Reverse link 308 -- 12.7 Processing gain of spreading spectrum 310 -- 12.8 IS-95 downlink receiver and performance 310 -- 12.9 IS-95 uplink receiver and performance 317 -- 12.10 3GPP-LTE uplink 318 -- 12.11 m-Sequences 321 -- 12.11.1 PN sequences of a shorter period 322 -- 12.11.2 Conditions for m-sequence generators 322 -- 12.11.3 Properties of m-sequence 323 -- 12.11.4 Ways to generate PN sequences 324 -- 12.12 Walsh sequences 327 -- 12.13 CAZAC sequences for LTE-A 327 -- 12.14 Nonorthogonal MA schemes 329 -- 12.15 Summary 330 -- Problems 330 -- References 334 -- 13 Wireless MIMO Systems 337 -- 13.1 Introduction 337 -- 13.2 Signal model and mutual information 338. 13.3 Capacity with CSIT 339 -- 13.4 Ergodic capacity without CSIT 340 -- 13.4.1 i.i.d. MIMO Rayleigh channels 341 -- 13.4.2 Ergodic capacity for correlated MIMO channels 341 -- 13.5 Capacity: asymptotic results 344 -- 13.5.1 Asymptotic capacity with large MIMO 344 -- 13.5.2 Large SNR approximation 345 -- 13.6 Optimal transceivers with CSIT 346 -- 13.6.1 Optimal eigenbeam transceiver 347 -- 13.6.2 Distributions of the largest eigenvalue 348 -- 13.6.3 Average symbol-error probability 350 -- 13.6.4 Average mutual information of MIMO-MRC 350 -- 13.6.5 Average symbol-error probability 351 -- 13.7 Receivers without CSIT 352 -- 13.8 Optimal receiver 352 -- 13.9 Zero-forcing MIMO receiver 353 -- 13.10 MMSE receiver 355 -- 13.11 VBLAST 357 -- 13.11.1 Alternative VBLAST based on QR decomposition 358 -- 13.12 Space / time block codes 359 -- 13.13 Alamouti codes 359 -- 13.13.1 One receive antenna 359 -- 13.13.2 Two receive antennas 360 -- 13.14 General space / time codes 362 -- 13.14.1 Exact pairwise error probability 363 -- 13.15 Information lossless space / time codes 365 -- 13.16 Multiplexing gain versus diversity gain 365 -- 13.16.1 Two frameworks 366 -- 13.16.2 Derivation of the DMT 367 -- 13.16.3 Available DFs for diversity 368 -- 13.17 Summary 370 -- Problems 370 -- References 374 -- 14 Cooperative Communications 377 -- 14.1 A historical review 377 -- 14.2 Relaying 378 -- 14.3 Cooperative communications 379 -- 14.3.1 Cooperation protocols 380 -- 14.3.2 Diversity analysis 382 -- 14.3.3 Resource allocation 384 -- 14.4 Multiple-relay cooperation 385 -- 14.4.1 Multi-relay over frequency-selective channels 386 -- 14.4.2 Optimal matrix structure 389 -- 14.4.3 Power allocation 390 -- 14.5 Two-way relaying 395 -- 14.5.1 Average power constraints 397 -- 14.5.2 Instantaneous power constraint 399 -- 14.6 Multi-cell MIMO 400 -- 14.7 Summary 401 -- Problems 401 -- References 402 -- 15 Cognitive Radio 405 -- 15.1 Introduction 405 -- 15.2 Spectrum sensing for spectrum holes 406 -- 15.3 Matched filter versus energy detector 407. 15.3.1 Matched-filter detection 407 -- 15.3.2 Energy detection 408 -- 15.4 Detection of random primary signals 410 -- 15.4.1 Energy-based detection 411 -- 15.4.2 Maximum likelihood ratio test 412 -- 15.4.3 Eigenvalue ratio test 413 -- 15.5 Detection without exact knowledge of (Sv(B2n 414 -- 15.5.1 LRT with (Sv(B2n 414 -- 15.5.2 LRT without noise-level reference 415 -- 15.6 Cooperative spectrum sensing 416 -- 15.7 Standardization of CR networks 418 -- 15.8 Experimentation and commercialization of CR systems 418 -- Problems 419 -- References 420 -- Index 423.
Restricted to subscribers or individual electronic text purchasers.
Mode of access: World Wide Web
9781119113263
10.1002/9781119113263 doi
Wireless communication systems.
Wireless communication systems--Forecasting.
Electronic books.
TK5103.2 / .W44 2007eb
621.384