Calderón Urbina, Juan Pablo.

Efficient material laser beam ablation with a picosecond laser [electronic resource] / by Juan Pablo Calderón Urbina. - 1st ed. 2021. - XXVI, 210 p. 1 illus. online resource. - Light Engineering für die Praxis, 2522-8455 . - Light Engineering für die Praxis, .

Introduction -- State of the art -- Research concept and approaches -- Methodology for the identification of influential parameters -- Description of the model -- Evaluation of results and analysis of influential parameters -- Conclusion and outlook.

The development of ultra-short pulse lasers has given laser beam ablation a wider application perspective by granting minimal thermal side-effects, industrial robustness and precision. A rising field of opportunity is the processing of ultra-hard materials. The intersection of reliable ultra-short pulse laser sources and the increasing trend of hardness represents an opportunity for laser beam ablation. This thesis describes the modeling and validation of multi-pulse picosecond laser beam ablation on cemented tungsten carbide (WC) to enable the identification of optimized parameter settings for an efficient ablation process. Thus, a quality-oriented experimental approach based on the variable search methodology was chosen. Within the multi-pulse laser beam ablation model, the Beer-Lambert law, heat transfer fundamentals, incubation and laser burst-mode are considered to accurately describe the process. Content A concise journey through the background and understanding of ultra-short pulse laser technologies Offers versatile application of quality-oriented tools in laser beam material processing Describes a single-pulse and multi-pulse model on cemented tungsten carbide capable to be adapted to other materials and laser systems The author Juan Pablo Calderón Urbina obtained his Bachelor’s degree in Industrial Engineering at the Morelia Institute of Technology in Morelia, Mexico (Instituto Tecnológico de Morelia). He specialized in International Production Management at the Hamburg University of Technology (Technische Universität Hamburg) for his Master of Science’s degree. Until 2013, he collaborated as a research assistant in several research and industrial projects with the Laser Zentrum Nord GmbH. In 2019, he concluded his scientific research and completed his doctorate at the Hamburg University of Technology, in the Institute of Laser and System Technologies (Institut für Laser- und Anlagensystemtechnik, iLAS).

9783662618868

10.1007/978-3-662-61886-8 doi


Manufactures.
Optics.
Machines, Tools, Processes.
Applied Optics.

TS1-2301

670