Barkhausen noise for nondestructive testing and materials characterization in low-carbon steels / edited by Tu Le Manh [and more]. - Duxford : Woodhead Publishing, 2020. - 1 online resource - Woodhead Publishing Series in Electronic and Optical Materials . - Woodhead Publishing series in electronic and optical materials. .

Includes index.

Intro -- Title page -- Table of Contents -- Copyright -- Contributors -- Preface -- Acknowledgment -- 1: Introduction -- Abstract -- 1.1 Brief history of Barkhausen noise -- 1.2 Physical foundations of Barkhausen noise -- 1.3 Spatial distribution and detection of BN -- 1.4 Relationship between Barkhausen noise and hysteresis -- 1.5 Stochastic vs. deterministic nature of Barkhausen noise -- 1.6 Applications -- 2: Measurement methods -- Abstract -- 2.1 Historical overview -- 2.2 Sample magnetization -- 2.3 Barkhausen noise detection -- 2.4 Signal processing -- 2.5 Measurement repeatability 3: Quantitative characterization of Barkhausen noise -- Abstract -- 3.1 Introduction -- 3.2 Magnitudes that characterize the BN signal -- 3.3 BN jump parameters -- 3.4 Probabilistic neural networks (PNN) -- 3.5 Feature extraction -- 3.6 The general self-organizing maps (SOM) algorithm -- 3.7 Initialization method for the SOM using BN signals -- 3.8 Deep neural networks -- 3.9 Concluding remarks -- 4: Materials -- Abstract -- 4.1 Introduction -- 4.2 Microstructural characteristics of low-carbon steels -- 4.3 Methods for the investigation of low-carbon steels 5: Barkhausen noise for material characterization -- Abstract -- 5.1 Introduction -- 5.2 Advantages and disadvantages of BN for material characterization -- 5.3 Dependence of BN on grain size -- 5.4 Influence of the carbon content on BN -- 5.5 Influence of applied tensile stress on BN -- 5.6 Influence of the uniaxial applied tensile stress on the BN signal -- 5.7 Influence of applied tensile stress on the angular dependence of BN -- 5.8 Influence of the uniaxial plastic deformation on the BN -- 5.9 Influence of simultaneous variation microstructural parameters on BN 5.10 Dependence of BN on plastic deformation and carbon content -- 5.11 Concluding remarks -- 6: Correlation between Barkhausen noise and magnetocrystalline anisotropy energy -- Abstract -- Acknowledgments -- 6.1 Introduction -- 6.2 MAE in a crystal -- 6.3 Determination of MAE in polycrystalline materials -- 6.4 MAE from EBSD microtexture measurements -- 6.5 Estimation of MAE from Barkhausen noise measurements in APL 5L steels -- 6.6 Correlation between MAE and Barkhausen noise -- 6.7 Correlation between EBSD microtexture-derived MAE and Barkhausen noise measurements 7: Model for the correlation between Barkhausen noise and, microstructure, and physical properties -- Abstract -- 7.1 Introduction -- 7.2 Review of current models of Barkhausen noise -- 7.3 Modeling the BN time-dependent signal -- 7.4 Modeling the average MAE from Barkhausen noise -- 7.5 Concluding remarks -- 8: Micromagnetic nondestructive testing Barkhausen noise vs other techniques -- Abstract -- 8.1 Introduction -- 8.2 Eddy current testing -- 8.3 Magnetic incremental permeability -- 8.4 Single and double needle probe method -- 8.5 Magnetic Barkhausen noise nondestructive testing method

9780081028780 0081028784

GBC072152 bnb

019811035 Uk


Barkhausen effect.
Nondestructive testing.
Effet Barkhausen.
Contr�ole non destructif.
nondestructive testing.
Barkhausen effect.
Nondestructive testing.

QC761

538/.3