Sustainable materials and green processing for energy conversion /
edited by Kuan Yew Cheong and Allen Apblett.
- 1 online resource
Intro -- Sustainable Materials and Green Processing for Energy Conversion -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Introduction to green processing for sustainable materials -- 1. Introduction -- 2. What are sustainable materials? -- 3. Types of sustainable materials -- 3.1. Inorganic nanomaterials -- 3.2. Metal-free nanomaterials -- 3.3. Hybrid nanomaterials -- 4. Techniques for sustainable materials syntheses -- 4.1. Conventional methods -- 4.1.1. Deposition techniques: Physical vapor deposition and chemical vapor deposition -- 4.1.2. Electrophoretic deposition -- 4.1.3. Spray pyrolysis -- 4.1.4. Anodization method -- 4.1.5. Hydrothermal/solvothermal method -- 4.1.6. Sol-gel method -- 4.1.7. Template method -- 4.2. ``Greener�� techniques in sustainable materials processing -- 4.2.1. Microwave technique -- 4.2.2. Sonochemical technique -- 4.2.3. Mechanochemical technique -- 5. Greener processing of carbon nanomaterials: Waste to nano carbons -- 6. Green processing using natural resources -- 6.1. Plant/plant waste extract -- 6.2. Bacteria -- 6.3. Other biological derivatives -- 6.4. Biotemplates in green processing of sustainable materials -- 7. Conclusion -- References -- Chapter 2: Advanced functional materials and devices for energy conversion and storage applications -- 1. Introduction -- 2. Piezoelectric-based ambient mechanical energy-harvesting/conversion systems (PENGs) -- 2.1. Conventional working mechanism of PENGs for harvesting ambient mechanical energies -- 2.2. Functional materials extensively employed in PENGs -- 2.2.1. Inorganic-based piezoelectric materials -- 2.2.2. Organic-based piezoelectric materials -- 2.2.2.1. Nonbiobased piezoelectric materials -- 2.2.2.2. Biobased piezoelectric materials -- 2.2.3. Hybrid/composite-based piezoelectric materials. 3. Triboelectric-based ambient mechanical energy-harvesting/conversion systems (TENGs) -- 3.1. Various working modes of TENGs -- 3.2. Typical working mechanisms of TENGs for harvesting ambient mechanical energies -- 3.3. Functional materials extensively employed in TENGs -- 4. Hybrid nanogenerators (HNGs) -- 5. Supercapacitor-based electrochemical energy storage systems -- 5.1. Different types of supercapacitor cell and their fundamental structural designs/architectures -- 5.2. Typical charge storage mechanisms -- 5.3. Functional micro/nanostructured electrode materials frequently employed in supercapacitors -- 5.4. Various functional electrolytes commonly employed in supercapacitors -- 5.5. Electrodes fabrication techniques -- 5.6. Supercapacitor electrodes and device/cell characterization techniques -- 6. Battery-based electrochemical energy storage systems -- 7. Conclusions and future perspective -- Acknowledgments -- Conflict of interest -- References -- Chapter 3: Recent development in sustainable technologies for clean hydrogen evolution: Current scenario and future persp ... -- 1. Introduction -- 1.1. Hydrogen production method -- 1.2. The general method of hydrogen production -- 1.3. Hydrogen potential for the energy generation process -- 2. Conventional process of hydrogen production -- 2.1. Fossil fuels -- 2.1.1. H2 generation from hydrocarbon (CnHmOp) reforming -- Steam reforming method -- Partial oxidation reforming -- Auto-thermal reforming -- 2.1.2. Hydrocarbon pyrolysis -- 2.2. Renewable sources for hydrogen production -- 2.2.1. Hydrogen production from biomass -- 2.2.2. Geothermal to hydrogen energy -- 2.2.3. Hydrothermal and marine into hydrogen energy -- 2.2.4. Solar and wind into hydrogen energy -- 2.3. Hydrogen production from water splitting -- 2.3.1. Water electrolysis -- 2.3.2. Thermolysis of water. 2.4. H2 production methods from solar light -- 2.4.1. Photoelectrolysis -- 2.4.2. Thermochemical water splitting -- 2.4.3. Photocatalytic water splitting -- 2.4.4. Photochemical reaction -- 3. Membrane-based technology for hydrogen separation -- 3.1. Proton-exchange membrane in water electrolysis -- 3.2. Anion-exchange membrane electrolysis -- 4. Artificial photosynthesis for hydrogen production -- 5. Semiconductor-based photocatalytic water splitting -- 5.1. Bandgap engineering -- 5.2. Interface engineering -- 6. Conclusion -- References -- Chapter 4: Earth-abundant electrocatalysts for sustainable energy conversion -- 1. Introduction -- 2. Fundamentals and principles of electrocatalysis -- 2.1. Mechanism of oxygen and hydrogen evolution reactions -- 2.2. Mechanism of CO2 electroreduction -- 3. Types of Earth-abundant electrocatalysts -- 3.1. Metallic catalysts -- 3.1.1. Transition metals, metal oxides, and hydroxides -- 3.1.2. Transition metal dichalcogenides -- 3.1.3. Other metal-based materials -- 3.2. Metal-free nanomaterials -- 3.2.1. Graphene -- 3.2.2. Graphitic carbon nitride -- 4. Catalyst preparations and strategies in enhancing electrocatalytic performance -- 4.1. Common methods of catalyst preparation -- 4.1.1. Hydrothermal synthesis, impregnation, and coprecipitation -- 4.1.2. Electrochemical methods -- 4.1.3. Others -- 4.2. Catalysts design strategies -- 4.2.1. Nanostructuring -- 4.2.2. Tuning catalyst composition and electronic structures -- 4.2.3. Interfacial engineering -- 4.2.4. Computer-assisted catalyst design -- 5. Durability challenges of electrocatalysts -- 5.1. Durability testing and characterization -- 5.2. Catalyst degradation and the mitigation strategies -- 6. Sustainability of electrocatalytic technologies -- 6.1. Life-cycle analysis -- 6.2. End-of-life technologies -- 7. Outlook -- References. Chapter 5: Green processes and sustainable materials for renewable energy production via water splitting -- 1. Introduction -- 2. Water-splitting processes -- 2.1. Biological water splitting -- 2.2. Thermochemical water splitting -- 2.3. Solar water splitting: A ``greener�� approach -- 2.3.1. Electrolysis -- 2.3.2. Photoelectrocatalytic and photocatalytic water splitting -- 2.3.3. Photocatalytic seawater splitting -- 3. Sustained water splitting using waste -- 4. Semiconducting materials for solar water splitting -- 4.1. Pure metal oxides/hybrid metal oxide -- 4.2. Metal chalcogenides -- 4.3. Metal-organic frameworks -- 4.4. Metal-free semiconductor nanomaterials -- 4.5. Green processing of semiconducting materials -- 5. Conclusions -- References -- Chapter 6: Graphitic carbon nitride-based photocatalysts for hydrogen production -- 1. Introduction -- 2. The fundamental framework for understanding photocatalysis for water splitting -- 3. Designing of heterojunctions based on g-C3N4 photocatalyst for hydrogen production -- 3.1. Type I heterojunction system based on the g-C3N4 photocatalyst -- 3.2. Type II heterojunction system based on the g-C3N4 photocatalyst -- 3.3. Z-scheme heterojunction system based on the g-C3N4 photocatalyst -- 3.4. Isotype heterojunction system based on the g-C3N4 photocatalyst -- 4. Conclusion -- Acknowledgments -- References -- Chapter 7: Catalytic reduction of 4-nitrophenol to 4-aminphenol in water using metal nanoparticles -- 1. Introduction -- 2. Reduction of nitroaromatic compounds using metal nanoparticles -- 3. Conclusion -- Acknowledgments -- References -- Chapter 8: Catalytic and noncatalytic growth of ZnO nanostructures on different substrates, and Sb-doped ZnO nanostruct -- 1. Introduction -- 2. Experimental methods -- 2.1. Synthesis of doped and undoped ZnO nanostructures -- 2.2. Material characterization. 3. Results and discussion -- 3.1. Morphology, composition, and structural properties -- 3.2. Room-temperature photoluminescence -- 4. Conclusions -- Acknowledgments -- References -- Chapter 9: Flexible single-source precursors for solar light-harvesting applications -- 1. Introduction -- 2. Single-source precursors -- 2.1. Advantages of single-source precursors -- 2.2. Features of single-source precursors -- 2.3. Diversity in single-source precursors for semiconductors -- 2.3.1. Chalcogenolato complexes -- 2.3.2. Dithio-/diselenophosphinato complexes -- 2.3.3. Bis(dialkydithio/selenocarbamato) metal compounds -- 2.3.4. N-alkyldithiocarbamato complexes -- 2.3.5. Mixed alkyl/dithio- or diselenocarbamato complexes -- 2.3.6. Xanthate complexes -- 2.3.7. Monothiocarbamato complexes -- 2.3.8. Dichalcogenoimidodiphosphinato complexes -- 2.3.9. Dimorpholinodithioacetylacetonato complexes -- 2.3.10. Thiobiurets and dithiobiurets -- 2.3.11. Thiosemicarbazide complexes -- 2.3.12. Diorganophosphides complexes -- 2.3.13. Complexes as single-source precursors for the formation of oxide-based nanomaterials -- 2.4. Morphological controls via single-source precursors -- 2.5. Light-harvesting applications of semiconductors -- 2.5.1. Solar cell applications -- 3. Conclusion -- References -- Chapter 10: Metal dithiocarbamates as useful precursors to metal sulfides for application in quantum dot-sensitized sola -- 1. Introduction -- 2. Sunlight as energy source -- 3. Generations in PV solar cells -- 3.1. First-generation solar cells -- 3.2. Second-generation solar cells -- 3.3. Third-generation solar cells -- 4. Performance parameters of solar cells -- 5. Semiconductor nanoparticles as light-absorbing materials for solar cells -- 5.1. Synthesis of nanoparticles -- 5.2. Binary nanoparticles -- 5.2.1. Antimony sulfide -- 5.2.2. Bismuth sulfide -- 5.2.3. Copper sulfide.
9780128230701 0128230703
Direct energy conversion--Materials.
�Energie--Conversion directe--Mat�eriaux.
TK2896
621.3124
Intro -- Sustainable Materials and Green Processing for Energy Conversion -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Introduction to green processing for sustainable materials -- 1. Introduction -- 2. What are sustainable materials? -- 3. Types of sustainable materials -- 3.1. Inorganic nanomaterials -- 3.2. Metal-free nanomaterials -- 3.3. Hybrid nanomaterials -- 4. Techniques for sustainable materials syntheses -- 4.1. Conventional methods -- 4.1.1. Deposition techniques: Physical vapor deposition and chemical vapor deposition -- 4.1.2. Electrophoretic deposition -- 4.1.3. Spray pyrolysis -- 4.1.4. Anodization method -- 4.1.5. Hydrothermal/solvothermal method -- 4.1.6. Sol-gel method -- 4.1.7. Template method -- 4.2. ``Greener�� techniques in sustainable materials processing -- 4.2.1. Microwave technique -- 4.2.2. Sonochemical technique -- 4.2.3. Mechanochemical technique -- 5. Greener processing of carbon nanomaterials: Waste to nano carbons -- 6. Green processing using natural resources -- 6.1. Plant/plant waste extract -- 6.2. Bacteria -- 6.3. Other biological derivatives -- 6.4. Biotemplates in green processing of sustainable materials -- 7. Conclusion -- References -- Chapter 2: Advanced functional materials and devices for energy conversion and storage applications -- 1. Introduction -- 2. Piezoelectric-based ambient mechanical energy-harvesting/conversion systems (PENGs) -- 2.1. Conventional working mechanism of PENGs for harvesting ambient mechanical energies -- 2.2. Functional materials extensively employed in PENGs -- 2.2.1. Inorganic-based piezoelectric materials -- 2.2.2. Organic-based piezoelectric materials -- 2.2.2.1. Nonbiobased piezoelectric materials -- 2.2.2.2. Biobased piezoelectric materials -- 2.2.3. Hybrid/composite-based piezoelectric materials. 3. Triboelectric-based ambient mechanical energy-harvesting/conversion systems (TENGs) -- 3.1. Various working modes of TENGs -- 3.2. Typical working mechanisms of TENGs for harvesting ambient mechanical energies -- 3.3. Functional materials extensively employed in TENGs -- 4. Hybrid nanogenerators (HNGs) -- 5. Supercapacitor-based electrochemical energy storage systems -- 5.1. Different types of supercapacitor cell and their fundamental structural designs/architectures -- 5.2. Typical charge storage mechanisms -- 5.3. Functional micro/nanostructured electrode materials frequently employed in supercapacitors -- 5.4. Various functional electrolytes commonly employed in supercapacitors -- 5.5. Electrodes fabrication techniques -- 5.6. Supercapacitor electrodes and device/cell characterization techniques -- 6. Battery-based electrochemical energy storage systems -- 7. Conclusions and future perspective -- Acknowledgments -- Conflict of interest -- References -- Chapter 3: Recent development in sustainable technologies for clean hydrogen evolution: Current scenario and future persp ... -- 1. Introduction -- 1.1. Hydrogen production method -- 1.2. The general method of hydrogen production -- 1.3. Hydrogen potential for the energy generation process -- 2. Conventional process of hydrogen production -- 2.1. Fossil fuels -- 2.1.1. H2 generation from hydrocarbon (CnHmOp) reforming -- Steam reforming method -- Partial oxidation reforming -- Auto-thermal reforming -- 2.1.2. Hydrocarbon pyrolysis -- 2.2. Renewable sources for hydrogen production -- 2.2.1. Hydrogen production from biomass -- 2.2.2. Geothermal to hydrogen energy -- 2.2.3. Hydrothermal and marine into hydrogen energy -- 2.2.4. Solar and wind into hydrogen energy -- 2.3. Hydrogen production from water splitting -- 2.3.1. Water electrolysis -- 2.3.2. Thermolysis of water. 2.4. H2 production methods from solar light -- 2.4.1. Photoelectrolysis -- 2.4.2. Thermochemical water splitting -- 2.4.3. Photocatalytic water splitting -- 2.4.4. Photochemical reaction -- 3. Membrane-based technology for hydrogen separation -- 3.1. Proton-exchange membrane in water electrolysis -- 3.2. Anion-exchange membrane electrolysis -- 4. Artificial photosynthesis for hydrogen production -- 5. Semiconductor-based photocatalytic water splitting -- 5.1. Bandgap engineering -- 5.2. Interface engineering -- 6. Conclusion -- References -- Chapter 4: Earth-abundant electrocatalysts for sustainable energy conversion -- 1. Introduction -- 2. Fundamentals and principles of electrocatalysis -- 2.1. Mechanism of oxygen and hydrogen evolution reactions -- 2.2. Mechanism of CO2 electroreduction -- 3. Types of Earth-abundant electrocatalysts -- 3.1. Metallic catalysts -- 3.1.1. Transition metals, metal oxides, and hydroxides -- 3.1.2. Transition metal dichalcogenides -- 3.1.3. Other metal-based materials -- 3.2. Metal-free nanomaterials -- 3.2.1. Graphene -- 3.2.2. Graphitic carbon nitride -- 4. Catalyst preparations and strategies in enhancing electrocatalytic performance -- 4.1. Common methods of catalyst preparation -- 4.1.1. Hydrothermal synthesis, impregnation, and coprecipitation -- 4.1.2. Electrochemical methods -- 4.1.3. Others -- 4.2. Catalysts design strategies -- 4.2.1. Nanostructuring -- 4.2.2. Tuning catalyst composition and electronic structures -- 4.2.3. Interfacial engineering -- 4.2.4. Computer-assisted catalyst design -- 5. Durability challenges of electrocatalysts -- 5.1. Durability testing and characterization -- 5.2. Catalyst degradation and the mitigation strategies -- 6. Sustainability of electrocatalytic technologies -- 6.1. Life-cycle analysis -- 6.2. End-of-life technologies -- 7. Outlook -- References. Chapter 5: Green processes and sustainable materials for renewable energy production via water splitting -- 1. Introduction -- 2. Water-splitting processes -- 2.1. Biological water splitting -- 2.2. Thermochemical water splitting -- 2.3. Solar water splitting: A ``greener�� approach -- 2.3.1. Electrolysis -- 2.3.2. Photoelectrocatalytic and photocatalytic water splitting -- 2.3.3. Photocatalytic seawater splitting -- 3. Sustained water splitting using waste -- 4. Semiconducting materials for solar water splitting -- 4.1. Pure metal oxides/hybrid metal oxide -- 4.2. Metal chalcogenides -- 4.3. Metal-organic frameworks -- 4.4. Metal-free semiconductor nanomaterials -- 4.5. Green processing of semiconducting materials -- 5. Conclusions -- References -- Chapter 6: Graphitic carbon nitride-based photocatalysts for hydrogen production -- 1. Introduction -- 2. The fundamental framework for understanding photocatalysis for water splitting -- 3. Designing of heterojunctions based on g-C3N4 photocatalyst for hydrogen production -- 3.1. Type I heterojunction system based on the g-C3N4 photocatalyst -- 3.2. Type II heterojunction system based on the g-C3N4 photocatalyst -- 3.3. Z-scheme heterojunction system based on the g-C3N4 photocatalyst -- 3.4. Isotype heterojunction system based on the g-C3N4 photocatalyst -- 4. Conclusion -- Acknowledgments -- References -- Chapter 7: Catalytic reduction of 4-nitrophenol to 4-aminphenol in water using metal nanoparticles -- 1. Introduction -- 2. Reduction of nitroaromatic compounds using metal nanoparticles -- 3. Conclusion -- Acknowledgments -- References -- Chapter 8: Catalytic and noncatalytic growth of ZnO nanostructures on different substrates, and Sb-doped ZnO nanostruct -- 1. Introduction -- 2. Experimental methods -- 2.1. Synthesis of doped and undoped ZnO nanostructures -- 2.2. Material characterization. 3. Results and discussion -- 3.1. Morphology, composition, and structural properties -- 3.2. Room-temperature photoluminescence -- 4. Conclusions -- Acknowledgments -- References -- Chapter 9: Flexible single-source precursors for solar light-harvesting applications -- 1. Introduction -- 2. Single-source precursors -- 2.1. Advantages of single-source precursors -- 2.2. Features of single-source precursors -- 2.3. Diversity in single-source precursors for semiconductors -- 2.3.1. Chalcogenolato complexes -- 2.3.2. Dithio-/diselenophosphinato complexes -- 2.3.3. Bis(dialkydithio/selenocarbamato) metal compounds -- 2.3.4. N-alkyldithiocarbamato complexes -- 2.3.5. Mixed alkyl/dithio- or diselenocarbamato complexes -- 2.3.6. Xanthate complexes -- 2.3.7. Monothiocarbamato complexes -- 2.3.8. Dichalcogenoimidodiphosphinato complexes -- 2.3.9. Dimorpholinodithioacetylacetonato complexes -- 2.3.10. Thiobiurets and dithiobiurets -- 2.3.11. Thiosemicarbazide complexes -- 2.3.12. Diorganophosphides complexes -- 2.3.13. Complexes as single-source precursors for the formation of oxide-based nanomaterials -- 2.4. Morphological controls via single-source precursors -- 2.5. Light-harvesting applications of semiconductors -- 2.5.1. Solar cell applications -- 3. Conclusion -- References -- Chapter 10: Metal dithiocarbamates as useful precursors to metal sulfides for application in quantum dot-sensitized sola -- 1. Introduction -- 2. Sunlight as energy source -- 3. Generations in PV solar cells -- 3.1. First-generation solar cells -- 3.2. Second-generation solar cells -- 3.3. Third-generation solar cells -- 4. Performance parameters of solar cells -- 5. Semiconductor nanoparticles as light-absorbing materials for solar cells -- 5.1. Synthesis of nanoparticles -- 5.2. Binary nanoparticles -- 5.2.1. Antimony sulfide -- 5.2.2. Bismuth sulfide -- 5.2.3. Copper sulfide.
9780128230701 0128230703
Direct energy conversion--Materials.
�Energie--Conversion directe--Mat�eriaux.
TK2896
621.3124