Clustering / (Record no. 59315)

000 -LEADER
fixed length control field 06825nam a2201297 i 4500
001 - CONTROL NUMBER
control field 5236612
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20200421114110.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 090727t20152009njua ob 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470382776
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- paper
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- paper
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 0# - CLASSIFICATION NUMBER
Call Number 519.5/3
082 04 - CLASSIFICATION NUMBER
Call Number 519.53
100 1# - AUTHOR NAME
Author Xu, Rui.
245 10 - TITLE STATEMENT
Title Clustering /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (x, 358 pages) :
490 1# - SERIES STATEMENT
Series statement IEEE Press Series on Computational Intelligence ;
505 0# - FORMATTED CONTENTS NOTE
Remark 2 PREFACE -- 1. CLUSTER ANALYSIS -- 1.1. Classifi cation and Clustering -- 1.2. Defi nition of Clusters -- 1.3. Clustering Applications -- 1.4. Literature of Clustering Algorithms -- 1.5. Outline of the Book -- 2. PROXIMITY MEASURES -- 2.1. Introduction -- 2.2. Feature Types and Measurement Levels -- 2.3. Defi nition of Proximity Measures -- 2.4. Proximity Measures for Continuous Variables -- 2.5. Proximity Measures for Discrete Variables -- 2.6. Proximity Measures for Mixed Variables -- 2.7. Summary -- 3. HIERARCHICAL CLUSTERING. -- 3.1. Introduction -- 3.2. Agglomerative Hierarchical Clustering -- 3.3. Divisive Hierarchical Clustering -- 3.4. Recent Advances -- 3.5. Applications -- 3.6. Summary -- 4. PARTITIONAL CLUSTERING -- 4.1. Introduction -- 4.2. Clustering Criteria -- 4.3. K-Means Algorithm -- 4.4. Mixture Density-Based Clustering -- 4.5. Graph Theory-Based Clustering -- 4.6. Fuzzy Clustering -- 4.7. Search Techniques-Based Clustering Algorithms -- 4.8. Applications -- 4.9. Summary -- 5. NEURAL NETWORK-BASED CLUSTERING -- 5.1. Introduction -- 5.2. Hard Competitive Learning Clustering -- 5.3. Soft Competitive Learning Clustering -- 5.4. Applications -- 5.5. Summary -- 6. KERNEL-BASED CLUSTERING -- 6.1. Introduction -- 6.2. Kernel Principal Component Analysis -- 6.3. Squared-Error-Based Clustering with Kernel Functions -- 6.4. Support Vector Clustering -- 6.5. Applications -- 6.6. Summary -- 7. SEQUENTIAL DATA CLUSTERING -- 7.1. Introduction -- 7.2. Sequence Similarity -- 7.3. Indirect Sequence Clustering -- 7.4. Model-Based Sequence Clustering -- 7.5. Applications-Genomic and Biological Sequence -- 7.6. Summary -- 8. LARGE-SCALE DATA CLUSTERING -- 8.1. Introduction -- 8.2. Random Sampling Methods -- 8.3. Condensation-Based Methods -- 8.4. Density-Based Methods -- 8.5. Grid-Based Methods -- 8.6. Divide and Conquer -- 8.7. Incremental Clustering -- 8.8. Applications -- 8.9. Summary -- 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 9.1. Introduction -- 9.2. Linear Projection Algorithms -- 9.3. Nonlinear Projection Algorithms -- 9.4. Projected and Subspace Clustering -- 9.5. Applications -- 9.6. Summary -- 10. CLUSTER VALIDITY -- 10.1. Introduction -- 10.2. External Criteria -- 10.3. Internal Criteria -- 10.4. Relative Criteria -- 10.5. Summary -- 11. CONCLUDING REMARKS -- PROBLEMS -- REFERENCES -- AUTHOR INDEX -- SUBJECT INDEX.
520 ## - SUMMARY, ETC.
Summary, etc This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
General subdivision Data processing.
700 1# - AUTHOR 2
Author 2 Wunsch, Donald C.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236612
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Piscataway, New Jersey :
-- IEEE Press,
-- c2009.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- 2008.
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Title from title screen.
588 ## -
-- Description based on PDF viewed 12/21/2015.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Cluster analysis.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Cluster analysis
695 ## -
-- Aerospace electronics
695 ## -
-- Algorithm design and analysis
695 ## -
-- Animals
695 ## -
-- Approximation algorithms
695 ## -
-- Artificial neural networks
695 ## -
-- Bibliographies
695 ## -
-- Binary trees
695 ## -
-- Bioinformatics
695 ## -
-- Biology
695 ## -
-- Clustering algorithms
695 ## -
-- Colon
695 ## -
-- Complexity theory
695 ## -
-- Convergence
695 ## -
-- Couplings
695 ## -
-- Covariance matrix
695 ## -
-- DNA
695 ## -
-- Data analysis
695 ## -
-- Data mining
695 ## -
-- Data structures
695 ## -
-- Data visualization
695 ## -
-- Databases
695 ## -
-- Diseases
695 ## -
-- Dynamic programming
695 ## -
-- Eigenvalues and eigenfunctions
695 ## -
-- Feature extraction
695 ## -
-- Frequency modulation
695 ## -
-- Genomics
695 ## -
-- Heuristic algorithms
695 ## -
-- Horses
695 ## -
-- Humans
695 ## -
-- Indexes
695 ## -
-- Iterative algorithm
695 ## -
-- Kernel
695 ## -
-- Lead
695 ## -
-- Lesions
695 ## -
-- Minimization
695 ## -
-- Nearest neighbor searches
695 ## -
-- Neurons
695 ## -
-- Nickel
695 ## -
-- Noise
695 ## -
-- Pain
695 ## -
-- Partitioning algorithms
695 ## -
-- Polynomials
695 ## -
-- Principal component analysis
695 ## -
-- Proteins
695 ## -
-- Prototypes
695 ## -
-- Q measurement
695 ## -
-- Sampling methods
695 ## -
-- Search problems
695 ## -
-- Sections
695 ## -
-- Shape
695 ## -
-- Sun
695 ## -
-- Surgery
695 ## -
-- Temperature measurement
695 ## -
-- Time measurement
695 ## -
-- Vectors

No items available.