Uncertainty and information : (Record no. 59359)

000 -LEADER
fixed length control field 11537nam a2201033 i 4500
001 - CONTROL NUMBER
control field 5237750
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20200421114111.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151221s2005 njua ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780471755579
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 04 - CLASSIFICATION NUMBER
Call Number 003/.54
100 1# - AUTHOR NAME
Author Klir, George J.,
245 10 - TITLE STATEMENT
Title Uncertainty and information :
Sub Title foundations of generalized information theory /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xvii, 499 pages) :
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- Acknowledgments -- 1 Introduction -- 1.1. Uncertainty and Its Significance -- 1.2. Uncertainty-Based Information -- 1.3. Generalized Information Theory -- 1.4. Relevant Terminology and Notation -- 1.5. An Outline of the Book -- Notes -- Exercises -- 2 Classical Possibility-Based Uncertainty Theory -- 2.1. Possibility and Necessity Functions -- 2.2. Hartley Measure of Uncertainty for Finite Sets -- 2.2.1. Simple Derivation of the Hartley Measure -- 2.2.2. Uniqueness of the Hartley Measure -- 2.2.3. Basic Properties of the Hartley Measure -- 2.2.4. Examples -- 2.3. Hartley-Like Measure of Uncertainty for Infinite Sets -- 2.3.1. Definition -- 2.3.2. Required Properties -- 2.3.3. Examples -- Notes -- Exercises -- 3 Classical Probability-Based Uncertainty Theory -- 3.1. Probability Functions -- 3.1.1. Functions on Finite Sets -- 3.1.2. Functions on Infinite Sets -- 3.1.3. Bayes' Theorem -- 3.2. Shannon Measure of Uncertainty for Finite Sets -- 3.2.1. Simple Derivation of the Shannon Entropy -- 3.2.2. Uniqueness of the Shannon Entropy -- 3.2.3. Basic Properties of the Shannon Entropy -- 3.2.4. Examples -- 3.3. Shannon-Like Measure of Uncertainty for Infinite Sets -- Notes -- Exercises -- 4 Generalized Measures and Imprecise Probabilities -- 4.1. Monotone Measures -- 4.2. Choquet Capacities -- 4.2.1. M�bius Representation -- 4.3. Imprecise Probabilities: General Principles -- 4.3.1. Lower and Upper Probabilities -- 4.3.2. Alternating Choquet Capacities -- 4.3.3. Interaction Representation -- 4.3.4. M�bius Representation -- 4.3.5. Joint and Marginal Imprecise Probabilities -- 4.3.6. Conditional Imprecise Probabilities -- 4.3.7. Noninteraction of Imprecise Probabilities -- 4.4. Arguments for Imprecise Probabilities -- 4.5. Choquet Integral -- 4.6. Unifying Features of Imprecise Probabilities -- Notes -- Exercises -- 5 Special Theories of Imprecise Probabilities -- 5.1. An Overview -- 5.2. Graded Possibilities -- 5.2.1. M�bius Representation -- 5.2.2. Ordering of Possibility Profiles.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 5.2.3. Joint and Marginal Possibilities -- 5.2.4. Conditional Possibilities -- 5.2.5. Possibilities on Infinite Sets -- 5.2.6. Some Interpretations of Graded Possibilities -- 5.3. Sugeno l-Measures -- 5.3.1. M�bius Representation -- 5.4. Belief and Plausibility Measures -- 5.4.1. Joint and Marginal Bodies of Evidence -- 5.4.2. Rules of Combination -- 5.4.3. Special Classes of Bodies of Evidence -- 5.5. Reachable Interval-Valued Probability Distributions -- 5.5.1. Joint and Marginal Interval-Valued Probability Distributions -- 5.6. Other Types of Monotone Measures -- Notes -- Exercises -- 6 Measures of Uncertainty and Information -- 6.1. General Discussion -- 6.2. Generalized Hartley Measure for Graded Possibilities -- 6.2.1. Joint and Marginal U-Uncertainties -- 6.2.2. Conditional U-Uncertainty -- 6.2.3. Axiomatic Requirements for the U-Uncertainty -- 6.2.4. U-Uncertainty for Infinite Sets -- 6.3. Generalized Hartley Measure in Dempster-Shafer Theory -- 6.3.1. Joint and Marginal Generalized Hartley Measures -- 6.3.2. Monotonicity of the Generalized Hartley Measure -- 6.3.3. Conditional Generalized Hartley Measures -- 6.4. Generalized Hartley Measure for Convex Sets of Probability Distributions -- 6.5. Generalized Shannon Measure in Dempster-Shafer Theory -- 6.6. Aggregate Uncertainty in Dempster-Shafer Theory -- 6.6.1. General Algorithm for Computing the Aggregate Uncertainty -- 6.6.2. Computing the Aggregated Uncertainty in Possibility Theory -- 6.7. Aggregate Uncertainty for Convex Sets of Probability Distributions -- 6.8. Disaggregated Total Uncertainty -- 6.9. Generalized Shannon Entropy -- 6.10. Alternative View of Disaggregated Total Uncertainty -- 6.11. Unifying Features of Uncertainty Measures -- Notes -- Exercises -- 7 Fuzzy Set Theory -- 7.1. An Overview -- 7.2. Basic Concepts of Standard Fuzzy Sets -- 7.3. Operations on Standard Fuzzy Sets -- 7.3.1. Complementation Operations -- 7.3.2. Intersection and Union Operations -- 7.3.3. Combinations of Basic Operations.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 7.3.4. Other Operations -- 7.4. Fuzzy Numbers and Intervals -- 7.4.1. Standard Fuzzy Arithmetic -- 7.4.2. Constrained Fuzzy Arithmetic -- 7.5. Fuzzy Relations -- 7.5.1. Projections and Cylindric Extensions -- 7.5.2. Compositions, Joins, and Inverses -- 7.6. Fuzzy Logic -- 7.6.1. Fuzzy Propositions -- 7.6.2. Approximate Reasoning -- 7.7. Fuzzy Systems -- 7.7.1. Granulation -- 7.7.2. Types of Fuzzy Systems -- 7.7.3. Defuzzification -- 7.8. Nonstandard Fuzzy Sets -- 7.9. Constructing Fuzzy Sets and Operations -- Notes -- Exercises -- 8 Fuzzification of Uncertainty Theories -- 8.1. Aspects of Fuzzification -- 8.2. Measures of Fuzziness -- 8.3. Fuzzy-Set Interpretation of Possibility Theory -- 8.4. Probabilities of Fuzzy Events -- 8.5. Fuzzification of Reachable Interval-Valued Probability Distributions -- 8.6. Other Fuzzification Efforts -- Notes -- Exercises -- 9 Methodological Issues -- 9.1. An Overview -- 9.2. Principle of Minimum Uncertainty -- 9.2.1. Simplification Problems -- 9.2.2. Conflict-Resolution Problems -- 9.3. Principle of Maximum Uncertainty -- 9.3.1. Principle of Maximum Entropy -- 9.3.2. Principle of Maximum Nonspecificity -- 9.3.3. Principle of Maximum Uncertainty in GIT -- 9.4. Principle of Requisite Generalization -- 9.5. Principle of Uncertainty Invariance -- 9.5.1. Computationally Simple Approximations -- 9.5.2. Probability-Possibility Transformations -- 9.5.3. Approximations of Belief Functions by Necessity Functions -- 9.5.4. Transformations Between l-Measures and Possibility Measures -- 9.5.5. Approximations of Graded Possibilities by Crisp Possibilities -- Notes -- Exercises -- 10 Conclusions -- 10.1. Summary and Assessment of Results in Generalized Information Theory -- 10.2. Main Issues of Current Interest -- 10.3. Long-Term Research Areas -- 10.4. Significance of GIT -- Notes -- Appendix A Uniqueness of the U-Uncertainty -- Appendix B Uniqueness of Generalized Hartley Measure in the Dempster-Shafer Theory -- Appendix C Correctness of Algorithm 6.1.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Appendix D Proper Range of Generalized�Shannon Entropy -- Appendix E Maximum of GSa in Section 6.9 -- Appendix F Glossary of Key Concepts -- Appendix G Glossary of Symbols -- Bibliography -- Subject Index -- Name Index.
520 ## - SUMMARY, ETC.
Summary, etc Deal with information and uncertainty properly and efficiently using tools emerging from generalized information theory Uncertainty and Information: Foundations of Generalized Information Theory contains comprehensive and up-to-date coverage of results that have emerged from a research program begun by the author in the early 1990s under the name "generalized information theory" (GIT). This ongoing research program aims to develop a formal mathematical treatment of the interrelated concepts of uncertainty and information in all their varieties. In GIT, as in classical information theory, uncertainty (predictive, retrodictive, diagnostic, prescriptive, and the like) is viewed as a manifestation of information deficiency, while information is viewed as anything capable of reducing the uncertainty. A broad conceptual framework for GIT is obtained by expanding the formalized language of classical set theory to include more expressive formalized languages based on fuzzy sets of various types, and by expanding classical theory of additive measures to include more expressive non-additive measures of various types. This landmark book examines each of several theories for dealing with particular types of uncertainty at the following four levels: * Mathematical formalization of the conceived type of uncertainty * Calculus for manipulating this particular type of uncertainty * Justifiable ways of measuring the amount of uncertainty in any situation formalizable in the theory * Methodological aspects of the theory With extensive use of examples and illustrations to clarify complex material and demonstrate practical applications, generous historical and bibliographical notes, end-of-chapter exercises to test readers' newfound knowledge, glossaries, and an Instructor's Manual, this is an excellent graduate-level textbook, as well as an outstanding reference for researchers and practitioners who deal with the various problems involving uncertainty and information. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237750
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- Wiley-Interscience,
-- c2006.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2005]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Uncertainty (Information theory)
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Fuzzy systems.
695 ## -
-- Additives
695 ## -
-- Aggregates
695 ## -
-- Algorithm design and analysis
695 ## -
-- Area measurement
695 ## -
-- Argon
695 ## -
-- Bibliographies
695 ## -
-- Books
695 ## -
-- Calculus
695 ## -
-- Capacity planning
695 ## -
-- Cities and towns
695 ## -
-- Cognition
695 ## -
-- Complexity theory
695 ## -
-- Decision making
695 ## -
-- Density functional theory
695 ## -
-- Distribution functions
695 ## -
-- Entropy
695 ## -
-- Equations
695 ## -
-- Finite element methods
695 ## -
-- Fuzzy set theory
695 ## -
-- Fuzzy sets
695 ## -
-- Indexes
695 ## -
-- Information theory
695 ## -
-- Joints
695 ## -
-- Materials
695 ## -
-- Mathematical model
695 ## -
-- Measurement errors
695 ## -
-- Measurement uncertainty
695 ## -
-- Measurement units
695 ## -
-- Possibility theory
695 ## -
-- Power measurement
695 ## -
-- Probabilistic logic
695 ## -
-- Probability density function
695 ## -
-- Probability distribution
695 ## -
-- Sections
695 ## -
-- Silicon
695 ## -
-- Statistical analysis
695 ## -
-- Temperature measurement
695 ## -
-- Terminology
695 ## -
-- Tin
695 ## -
-- Uncertain systems
695 ## -
-- Uncertainty
695 ## -
-- Weaving

No items available.