Whole-angle MEMs gyroscopes : (Record no. 69273)

000 -LEADER
fixed length control field 06976cam a2200697 i 4500
001 - CONTROL NUMBER
control field on1153340149
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220711203603.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 200318s2020 njua ob 001 0 eng
019 ## -
-- 1159033437
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119441908
-- electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1119441900
-- electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119441922
-- electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1119441927
-- electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1119441862
-- electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119441861
-- (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- hardcover
029 1# - (OCLC)
OCLC library identifier AU@
System control number 000067129936
082 00 - CLASSIFICATION NUMBER
Call Number 681/.753
100 1# - AUTHOR NAME
Author Senkal, Doruk,
245 10 - TITLE STATEMENT
Title Whole-angle MEMs gyroscopes :
Sub Title challenges and opportunities /
250 ## - EDITION STATEMENT
Edition statement First edition.
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 online resource (xiv, 153 pages) :
490 0# - SERIES STATEMENT
Series statement IEEE Press series on sensors
520 ## - SUMMARY, ETC.
Summary, etc "Coriolis Vibratory Gyroscopes (CVGs) can be divided into two broad categories based on the gyroscope's mechanical element: (Type 1) degenerate mode gyroscopes, which have x-y symmetry, and (Type 2) non-degenerate mode gyroscopes, which are designed intentionally to be asymmetric in x and y modes. Currently, non-degenerate mode gyroscopes fulfill the needs of a variety of commercial applications, such as tilt detection, activity tracking, and gaming. However, when it comes to inertial navigation, where sensitivity and stability of the sensors are very important, commercially available MEMS sensors fall short by three orders of magnitude. Degenerate mode gyroscopes on the other hand, have a number of unique advantages compared to non-degenerate vibratory rate gyroscopes, including higher rate sensitivity, ability to implement whole-angle mechanization with mechanically unlimited dynamic range, exceptional scale factor stability, and a potential for self-calibration. For this reason, as the MEMS gyroscope development is reaching maturity, the Research and Development focus is shifting from high-volume production of low-cost non-degenerate mode gyroscopes to high performance degenerate mode gyroscopes. This paradigm shift in MEMS gyroscope research and development creates a need for a reference book to serve both as a guide and an entry point to the world of degenerate mode gyroscopes"--
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Cover -- Title Page -- Copyright Page -- Contents -- List of Abbreviations -- Preface -- About the Authors -- Part I Fundamentals of Whole-Angle Gyroscopes -- Chapter 1 Introduction -- 1.1 Types of Coriolis Vibratory Gyroscopes -- 1.1.1 Nondegenerate Mode Gyroscopes -- 1.1.2 Degenerate Mode Gyroscopes -- 1.2 Generalized CVG Errors -- 1.2.1 Scale Factor Errors -- 1.2.2 Bias Errors -- 1.2.3 Noise Processes -- 1.2.3.1 Allan Variance -- 1.3 Overview -- Chapter 2 Dynamics -- 2.1 Introduction to Whole-Angle Gyroscopes -- 2.2 Foucault Pendulum Analogy -- 2.2.1 Damping and Q-factor
505 8# - FORMATTED CONTENTS NOTE
Remark 2 2.2.1.1 Viscous Damping -- 2.2.1.2 Anchor Losses -- 2.2.1.3 Material Losses -- 2.2.1.4 Surface Losses -- 2.2.1.5 Mode Coupling Losses -- 2.2.1.6 Additional Dissipation Mechanisms -- 2.2.2 Principal Axes of Elasticity and Damping -- 2.3 Canonical Variables -- 2.4 Effect of Structural Imperfections -- 2.5 Challenges of Whole-Angle Gyroscopes -- Chapter 3 Control Strategies -- 3.1 Quadrature and Coriolis Duality -- 3.2 Rate Gyroscope Mechanization -- 3.2.1 Open-loop Mechanization -- 3.2.1.1 Drive Mode Oscillator -- 3.2.1.2 Amplitude Gain Control -- 3.2.1.3 Phase Locked Loop/Demodulation
505 8# - FORMATTED CONTENTS NOTE
Remark 2 3.2.1.4 Quadrature Cancellation -- 3.2.2 Force-to-rebalance Mechanization -- 3.2.2.1 Force-to-rebalance Loop -- 3.2.2.2 Quadrature Null Loop -- 3.3 Whole-Angle Mechanization -- 3.3.1 Control System Overview -- 3.3.2 Amplitude Gain Control -- 3.3.2.1 Vector Drive -- 3.3.2.2 Parametric Drive -- 3.3.3 Quadrature Null Loop -- 3.3.3.1 AC Quadrature Null -- 3.3.3.2 DC Quadrature Null -- 3.3.4 Force-to-rebalance and Virtual Carouseling -- 3.4 Conclusions -- Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures -- Chapter 4 Overview of 2-D Micro-Machined Whole-Angle Gyroscopes
505 8# - FORMATTED CONTENTS NOTE
Remark 2 4.1 2-D Micro-Machined Whole-Angle Gyroscope Architectures -- 4.1.1 Lumped Mass Systems -- 4.1.2 Ring/Disk Systems -- 4.1.2.1 Ring Gyroscopes -- 4.1.2.2 Concentric Ring Systems -- 4.1.2.3 Disk Gyroscopes -- 4.2 2-D Micro-Machining Processes -- 4.2.1 Traditional Silicon MEMS Process -- 4.2.2 Integrated MEMS/CMOS Fabrication Process -- 4.2.3 Epitaxial Silicon Encapsulation Process -- Chapter 5 Example 2-D Micro-Machined Whole-Angle Gyroscopes -- 5.1 A Distributed Mass MEMS Gyroscope -- Toroidal Ring Gyroscope -- 5.1.1 Architecture -- 5.1.1.1 Electrode Architecture
505 8# - FORMATTED CONTENTS NOTE
Remark 2 5.1.2 Experimental Demonstration of the Concept -- 5.1.2.1 Fabrication -- 5.1.2.2 Experimental Setup -- 5.1.2.3 Mechanical Characterization -- 5.1.2.4 Rate Gyroscope Operation -- 5.1.2.5 Comparison of Vector Drive and Parametric Drive -- 5.2 A Lumped Mass MEMS Gyroscope -- Dual Foucault Pendulum Gyroscope -- 5.2.1 Architecture -- 5.2.1.1 Electrode Architecture -- 5.2.2 Experimental Demonstration of the Concept -- 5.2.2.1 Fabrication -- 5.2.2.2 Experimental Setup -- 5.2.2.3 Mechanical Characterization -- 5.2.2.4 Rate Gyroscope Operation -- 5.2.2.5 Parameter Identification
590 ## - LOCAL NOTE (RLIN)
Local note John Wiley and Sons
700 1# - AUTHOR 2
Author 2 Shkel, Andrei,
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1002/9781119441908
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- John Wiley & Sons, Inc. ;
-- Piscataway, NJ :
-- IEEE Press,
-- [2020]
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- n
-- rdamedia
338 ## -
-- online resource
-- nc
-- rdacarrier
520 ## - SUMMARY, ETC.
-- Provided by publisher.
588 ## -
-- Description based on online resource; title from digital title page (viewed on June 24, 2020).
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Gyroscopes.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Adaptive control systems.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Accelerometers.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Microelectromechanical systems.
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Accelerometers.
-- (OCoLC)fst00795228
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Adaptive control systems.
-- (OCoLC)fst00796490
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Gyroscopes.
-- (OCoLC)fst00949770
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Microelectromechanical systems.
-- (OCoLC)fst01019745
994 ## -
-- 92
-- DG1

No items available.