Genomics and proteomics engineering in medicine and biology (Record no. 73791)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 08413nam a2201261 i 4500 |
001 - CONTROL NUMBER | |
control field | 5237890 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20220712205617.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 070326t20152007njua ob 001 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
ISBN | 9780470052198 |
-- | eBook |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | paper |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | ebook |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | ebook |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | eBook |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | hardback |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | electronic |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | electronic |
082 04 - CLASSIFICATION NUMBER | |
Call Number | 572.86 |
245 00 - TITLE STATEMENT | |
Title | Genomics and proteomics engineering in medicine and biology |
300 ## - PHYSICAL DESCRIPTION | |
Number of Pages | 1 PDF (xv, 297 pages) : |
490 1# - SERIES STATEMENT | |
Series statement | IEEE press series on biomedical engineering ; |
500 ## - GENERAL NOTE | |
Remark 1 | "IEEE Engineering in Medicine and Biology Society, Sponsor." |
505 0# - FORMATTED CONTENTS NOTE | |
Remark 2 | Preface. -- Contributors. -- 1. Qualitative Knowledge Models in Functional Genomics and Proteomics (Mor Peleg, Irene S. Gabashvili, and Russ B. Altman). -- 1.1. Introduction. -- 1.2. Methods and Tools. -- 1.3. Modeling Approach and Results. -- 1.4. Discussion. -- 1.5. Conclusion. -- References. -- 2. Interpreting Microarray Data and Related Applications Using Nonlinear System Identification (Michael Korenberg). -- 2.1. Introduction. -- 2.2. Background. -- 2.3. Parallel Cascade Identification. -- 2.4. Constructing Class Predictors. -- 2.5. Prediction Based on Gene Expression Profiling. -- 2.6. Comparing Different Predictors Over the Same Data Set. -- 2.7. Concluding Remarks. -- References. -- 3. Gene Regulation Bioinformatics of Microarray Data (Gert Thijs, Frank De Smet, Yves Moreau, Kathleen Marchal, and Bart De Moor). -- 3.1. Introduction. -- 3.2. Introduction to Transcriptional Regulation. -- 3.3. Measuring Gene Expression Profiles. -- 3.4. Preprocessing of Data. -- 3.5. Clustering of Gene Expression Profiles. -- 3.6. Cluster Validation. -- 3.7. Searching for Common Binding Sites of Coregulated Genes. -- 3.8. Inclusive: Online Integrated Analysis of Microarray Data. -- 3.9. Further Integrative Steps. -- 3.10. Conclusion. -- References. -- 4. Robust Methods for Microarray Analysis (George S. Davidson, Shawn Martin, Kevin W. Boyack, Brian N. Wylie, Juanita Martinez, Anthony Aragon, Margaret Werner-Washburne, Monica Mosquera-Caro, and Cheryl Willman). -- 4.1. Introduction. -- 4.2. Microarray Experiments and Analysis Methods. -- 4.3. Unsupervised Methods. -- 4.4. Supervised Methods. -- 4.5. Conclusion. -- References. -- 5. In Silico Radiation Oncology: A Platform for Understanding Cancer Behavior and Optimizing Radiation Therapy Treatment (G. Stamatakos, D. Dionysiou, and N. Uzunoglu). -- 5.1. Philosophiae Tumoralis Principia Algorithmica: Algorithmic Principles of Simulating Cancer on Computer. -- 5.2. Brief Literature Review. -- 5.3. Paradigm of Four-Dimensional Simulation of Tumor Growth and Response to Radiation Therapy In Vivo. |
505 8# - FORMATTED CONTENTS NOTE | |
Remark 2 | 5.4. Discussion. -- 5.5. Future Trends. -- References. -- 6. Genomewide Motif Identification Using a Dictionary Model (Chiara Sabatti and Kenneth Lange). -- 6.1. Introduction. -- 6.2. Unified Model. -- 6.3. Algorithms for Likelihood Evaluation. -- 6.4. Parameter Estimation via Minorization-Maximization Algorithm. -- 6.5. Examples. -- 6.6. Discussion and Conclusion. -- References. -- 7. Error Control Codes and the Genome (Elebeoba E. May). -- 7.1. Error Control and Communication: A Review. -- 7.3. Reverse Engineering the Genetic Error Control System. -- 7.4. Applications of Biological Coding Theory. -- References. -- 8. Complex Life Science Multidatabase Queries (Zina Ben Miled, Nianhua Li, Yue He, Malika Mahoui, and Omran Bukhres). -- 8.1. Introduction. -- 8.2. Architecture. -- 8.3. Query Execution Plans. -- 8.4. Related Work. -- 8.5. Future Trends. -- References. -- 9. Computational Analysis of Proteins (Dimitrios I. Fotiadis, Yorgos Goletsis, Christos Lampros, and Costas Papaloukas). -- 9.1. Introduction: Definitions. -- 9.2. Databases. -- 9.3. Sequence Motifs and Domains. -- 9.4. Sequence Alignment. -- 9.5. Modeling. -- 9.6. Classification and Prediction. -- 9.7. Natural Language Processing. -- 9.8. Future Trends. -- References. -- 10. Computational Analysis of Interactions Between Tumor and Tumor Suppressor Proteins (E. Pirogova, M. Akay, and I. Cosic). -- 10.1. Introduction. -- 10.2. Methodology: Resonant Recognition Model. -- 10.3. Results and Discussions. -- 10.4. Conclusion. -- References. -- Index. -- About the Editor. |
520 ## - SUMMARY, ETC. | |
Summary, etc | Current applications and recent advances in genomics and proteomics Genomics and Proteomics Engineering in Medicine and Biology presents a well-rounded, interdisciplinary discussion of a topic that is at the cutting edge of both molecular biology and bioengineering. Compiling contributions by established experts, this book highlights up-to-date applications of biomedical informatics, as well as advancements in genomics-proteomics areas. Structures and algorithms are used to analyze genomic data and develop computational solutions for pathological understanding. Topics discussed include: . Qualitative knowledge models. Interpreting micro-array data. Gene regulation bioinformatics. Methods to analyze micro-array. Cancer behavior and radiation therapy. Error-control codes and the genome. Complex life science multi-database queries. Computational protein analysis. Tumor and tumor suppressor proteins interactions. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Proteomics. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Genomics. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Bioinformatics. |
650 #2 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Genomics. |
650 #2 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Proteomics. |
650 #2 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Genetic Engineering. |
650 #2 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Proteins |
General subdivision | genetics. |
650 #2 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Genetic Techniques. |
650 #2 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Computational Biology. |
700 1# - AUTHOR 2 | |
Author 2 | Akay, Metin. |
856 42 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237890 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | eBooks |
264 #1 - | |
-- | Piscataway, New Jersey : |
-- | IEEE Press, |
-- | c2007. |
336 ## - | |
-- | text |
-- | rdacontent |
337 ## - | |
-- | electronic |
-- | isbdmedia |
338 ## - | |
-- | online resource |
-- | rdacarrier |
588 ## - | |
-- | Description based on PDF viewed 12/18/2015. |
695 ## - | |
-- | Amino acids |
695 ## - | |
-- | Approximation methods |
695 ## - | |
-- | Arrays |
695 ## - | |
-- | Biographies |
695 ## - | |
-- | Bioinformatics |
695 ## - | |
-- | Biological system modeling |
695 ## - | |
-- | Biology |
695 ## - | |
-- | Cancer |
695 ## - | |
-- | Channel coding |
695 ## - | |
-- | Chemicals |
695 ## - | |
-- | Complexity theory |
695 ## - | |
-- | Computational modeling |
695 ## - | |
-- | Correlation |
695 ## - | |
-- | DNA |
695 ## - | |
-- | Data visualization |
695 ## - | |
-- | Databases |
695 ## - | |
-- | Decision support systems |
695 ## - | |
-- | Dictionaries |
695 ## - | |
-- | Diseases |
695 ## - | |
-- | Distributed databases |
695 ## - | |
-- | Error correction |
695 ## - | |
-- | Estimation |
695 ## - | |
-- | Gene expression |
695 ## - | |
-- | Generators |
695 ## - | |
-- | Genomics |
695 ## - | |
-- | Hidden Markov models |
695 ## - | |
-- | Humans |
695 ## - | |
-- | Indexes |
695 ## - | |
-- | Kernel |
695 ## - | |
-- | Knowledge based systems |
695 ## - | |
-- | Laboratories |
695 ## - | |
-- | Mathematical model |
695 ## - | |
-- | Maximum likelihood decoding |
695 ## - | |
-- | Noise |
695 ## - | |
-- | Noise measurement |
695 ## - | |
-- | Nonlinear systems |
695 ## - | |
-- | Ontologies |
695 ## - | |
-- | Petri nets |
695 ## - | |
-- | Polymers |
695 ## - | |
-- | Protein engineering |
695 ## - | |
-- | Protein sequence |
695 ## - | |
-- | Proteins |
695 ## - | |
-- | RNA |
695 ## - | |
-- | Robustness |
695 ## - | |
-- | Shape |
695 ## - | |
-- | Solid modeling |
695 ## - | |
-- | Transforms |
695 ## - | |
-- | Tumors |
695 ## - | |
-- | Warehousing |
No items available.