Theory and computation of electromagnetic fields / (Record no. 74092)

000 -LEADER
fixed length control field 16339nam a2201117 i 4500
001 - CONTROL NUMBER
control field 5628376
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205746.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151221s2010 njua ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470874257
-- ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
100 1# - AUTHOR NAME
Author Jin, Jian-Ming,
245 10 - TITLE STATEMENT
Title Theory and computation of electromagnetic fields /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xv, 572 pages, [28] pages of plates) :
505 0# - FORMATTED CONTENTS NOTE
Remark 2 PREFACE -- ACKNOWLEDGMENTS -- PART I ELECTROMAGNETIC FIELD THEORY -- CHAPTER 1 BASIC ELECTROMAGNETIC THEORY -- 1.1 Review of Vector Analysis -- 1.1.1 Vector Operations and Integral Theorems -- 1.1.2 Symbolic Vector Method -- 1.1.3 Helmholtz Decomposition Theorem -- 1.1.4 Green's Theorems -- 1.2 Maxwell's Equations in Terms of Total Charges and Currents -- 1.2.1 Maxwell's Equations in Integral Form -- 1.2.2 Maxwell's Equations in Differential Form -- 1.2.3 Current Continuity Equation -- 1.2.4 The Lorentz Force Law -- 1.3 Constitutive Relations -- 1.3.1 Electric Polarization -- 1.3.2 Magnetization -- 1.3.3 Electric Conduction -- 1.3.4 Classifi cation of Media -- 1.4 Maxwell's Equations in Terms of Free Charges and Currents -- 1.5 Boundary Conditions -- 1.6 Energy, Power, and Poynting's Theorem -- 1.7 Time-Harmonic Fields -- 1.7.1 Time-Harmonic Fields -- 1.7.2 Fourier Transforms -- 1.7.3 Complex Power -- 1.7.4 Complex Permittivity and Permeability -- CHAPTER 2 ELECTROMAGNETIC RADIATION IN FREE SPACE -- 2.1 Scalar and Vector Potentials -- 2.1.1 Static Fields -- 2.1.2 Time-Harmonic Fields and the Lorenz Gauge Condition -- 2.2 Solution of Vector Potentials in Free Space -- 2.2.1 Delta Function and Green's Function -- 2.2.2 Green's Function in Free Space -- 2.2.3 Field-Source Relations in Free Space -- 2.2.4 Why Use Auxiliary Potential Functions -- 2.2.5 Free-Space Dyadic Green's Functions -- 2.3 Electromagnetic Radiation in Free Space -- 2.3.1 Infi nitesimal Electric Dipole -- 2.3.2 Finite Electric Dipole -- 2.3.3 Far-Field Approximation and the Sommerfeld Radiation Condition -- 2.3.4 Circular Current Loop and Magnetic Dipole -- 2.4 Radiation by Surface Currents and Phased Arrays -- 2.4.1 Radiation by a Surface Current -- 2.4.2 Radiation by a Phased Array -- CHAPTER 3 ELECTROMAGNETIC THEOREMS AND PRINCIPLES -- 3.1 Uniqueness Theorem -- 3.2 Image Theory -- 3.2.1 Basic Image Theory -- 3.2.2 Half-Space Field-Source Relations -- 3.3 Reciprocity Theorems -- 3.3.1 General Reciprocity Theorem.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 3.3.2 Lorentz Reciprocity Theorem -- 3.3.3 Rayleigh-Carson Reciprocity Theorem -- 3.4 Equivalence Principles -- 3.4.1 Surface Equivalence Principle -- 3.4.2 Application to Scattering by a Conducting Object -- 3.4.3 Application to Scattering by a Dielectric Object -- 3.4.4 Volume Equivalence Principle -- 3.5 Duality Principle -- 3.6 Aperture Radiation and Scattering -- 3.6.1 Equivalent Problems -- 3.6.2 Babinet's Principle -- 3.6.3 Complementary Antennas -- CHAPTER 4 TRANSMISSION LINES AND PLANE WAVES -- 4.1 Transmission Line Theory -- 4.1.1 Governing Differential Equations and General Solutions -- 4.1.2 Refl ection and Transmission -- 4.1.3 Green's Function and Eigenfunction Expansion -- 4.2 Wave Equations and General Solutions -- 4.2.1 Wave Equations and Solution by Separation of Variables -- 4.2.2 Characteristics of a Plane Wave -- 4.2.3 Wave Velocities and Attenuation -- 4.2.4 Linear, Circular, and Elliptical Polarizations -- 4.2.5 Wave Propagation in Metamaterials -- 4.3 Plane Waves Generated by A Current Sheet -- 4.4 Refl ection and Transmission -- 4.4.1 Refl ection and Transmission at Normal Incidence -- 4.4.2 Refl ection and Transmission at Oblique Incidence -- 4.4.3 Total Transmission and Total Reflection -- 4.4.4 Transmission into a Left-Handed Medium -- 4.4.5 Plane Waves versus Transmission Lines -- 4.5 Plane Waves in Anisotropic and Bi-Isotropic Media -- 4.5.1 Plane Waves in Uniaxial Media -- 4.5.2 Plane Waves in Gyrotropic Media -- 4.5.3 Plane Waves in Chiral Media -- CHAPTER 5 FIELDS AND WAVES IN RECTANGULAR COORDINATES -- 5.1 Uniform Waveguides -- 5.1.1 General Analysis -- 5.1.2 General Characteristics -- 5.1.3 Uniform Rectangular Waveguide -- 5.1.4 Losses in Waveguides and Attenuation Constant -- 5.2 Uniform Cavities -- 5.2.1 General Theory -- 5.2.2 Rectangular Cavity -- 5.2.3 Material and Geometry Perturbations -- 5.3 Partially Filled Waveguides and Dielectric Slab Waveguides -- 5.3.1 General Theory -- 5.3.2 Partially Filled Rectangular Waveguide -- 5.3.3 Dielectric Slab Waveguide on a Ground Plane.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 5.4 Field Excitation in Waveguides -- 5.4.1 Excitation by Planar Surface Currents -- 5.4.2 Excitation by General Volumetric Currents -- 5.5 Fields in Planar Layered Media -- 5.5.1 Spectral Green's Function and Sommerfeld Identity -- 5.5.2 Vertical Electric Dipole above a Layered Medium -- 5.5.3 Horizontal Electric Dipole above a Layered Medium -- 5.5.4 Dipoles on a Grounded Dielectric Slab -- CHAPTER 6 FIELDS AND WAVES IN CYLINDRICAL COORDINATES -- 6.1 Solution of Wave Equation -- 6.1.1 Solution by Separation of Variables -- 6.1.2 Cylindrical Wave Functions -- 6.2 Circular and Coaxial Waveguides and Cavities -- 6.2.1 Circular Waveguide -- 6.2.2 Coaxial Waveguide -- 6.2.3 Cylindrical Cavity -- 6.3 Circular Dielectric Waveguide -- 6.3.1 Analysis of Hybrid Modes -- 6.3.2 Characteristics of Hybrid Modes -- 6.4 Wave Transformation and Scattering Analysis -- 6.4.1 Wave Transformation -- 6.4.2 Scattering by a Circular Conducting Cylinder -- 6.4.3 Scattering by a Circular Dielectric Cylinder -- 6.4.4 Scattering by a Circular Multilayer Dielectric Cylinder -- 6.5 Radiation by Infi nitely Long Currents -- 6.5.1 Line Current Radiation in Free Space -- 6.5.2 Radiation by a Cylindrical Surface Current -- 6.5.3 Radiation in the Presence of a Circular Conducting Cylinder -- 6.5.4 Radiation in the Presence of a Conducting Wedge -- 6.5.5 Radiation by a Finite Current -- CHAPTER 7 FIELDS AND WAVES IN SPHERICAL COORDINATES -- 7.1 Solution of Wave Equation -- 7.1.1 Solution by Separation of Variables -- 7.1.2 Spherical Wave Functions -- 7.1.3 TEr and TMr Modes -- 7.2 Spherical Cavity -- 7.3 Biconical Antenna -- 7.3.1 Infi nitely Long Model -- 7.3.2 Finite Biconical Antenna -- 7.4 Wave Transformation and Scattering Analysis -- 7.4.1 Wave Transformation -- 7.4.2 Expansion of a Plane Wave -- 7.4.3 Scattering by a Conducting Sphere -- 7.4.4 Scattering by a Dielectric Sphere -- 7.4.5 Scattering by a Multilayer Dielectric Sphere -- 7.5 Addition Theorem and Radiation Analysis -- 7.5.1 Addition Theorem for Spherical Wave Functions.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 7.5.2 Radiation of a Spherical Surface Current -- 7.5.3 Radiation in the Presence of a Sphere -- 7.5.4 Radiation in the Presence of a Conducting Cone -- PART II ELECTROMAGNETIC FIELD COMPUTATION -- CHAPTER 8 THE FINITE DIFFERENCE METHOD -- 8.1 Finite Differencing Formulas -- 8.2 One-Dimensional Analysis -- 8.2.1 Solution of the Diffusion Equation -- 8.2.2 Solution of the Wave Equation -- 8.2.3 Stability Analysis -- 8.2.4 Numerical Dispersion Analysis -- 8.3 Two-Dimensional Analysis -- 8.3.1 Analysis in the Time Domain -- 8.3.2 Analysis in the Frequency Domain -- 8.4 Yee's FDTD Scheme -- 8.4.1 Two-Dimensional Analysis -- 8.4.2 Three-Dimensional Analysis -- 8.5 Absorbing Boundary Conditions -- 8.5.1 One-Dimensional ABC -- 8.5.2 Two-Dimensional ABCs -- 8.5.3 Perfectly Matched Layers -- 8.6 Modeling of Dispersive Media -- 8.6.1 Recursive Convolution Approach -- 8.6.2 Auxiliary Differential Equation Approach -- 8.7 Wave Excitation and Far-Field Calculation -- 8.7.1 Modeling of Wave Excitation -- 8.7.2 Near-to-Far Field Transformation -- 8.8 Summary -- CHAPTER 9 THE FINITE ELEMENT METHOD -- 9.1 Introduction to the Finite Element Method -- 9.1.1 The General Principle -- 9.1.2 One-Dimensional Example -- 9.2 Finite Element Analysis of Scalar Fields -- 9.2.1 The Boundary-Value Problem -- 9.2.2 Finite Element Formulation -- 9.2.3 Application Examples -- 9.3 Finite Element Analysis of Vector Fields -- 9.3.1 The Boundary-Value Problem -- 9.3.2 Finite Element Formulation -- 9.3.3 Application Examples -- 9.4 Finite Element Analysis in the Time Domain -- 9.4.1 The Boundary-Value Problem -- 9.4.2 Finite Element Formulation -- 9.4.3 Application Examples -- 9.5 Absorbing Boundary Conditions -- 9.5.1 Two-Dimensional ABCs -- 9.5.2 Three-Dimensional ABCs -- 9.5.3 Perfectly Matched Layers -- 9.6 Some Numerical Aspects -- 9.6.1 Mesh Generation -- 9.6.2 Matrix Solvers -- 9.6.3 Higher-Order Elements -- 9.6.4 Curvilinear Elements -- 9.6.5 Adaptive Finite Element Analysis -- CHAPTER 10 THE METHOD OF MOMENTS.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 10.1 Introduction to the Method of Moments -- 10.2 Two-Dimensional Analysis -- 10.2.1 Formulation of Integral Equations -- 10.2.2 Scattering by a Conducting Cylinder -- 10.2.3 Scattering by a Conducting Strip -- 10.2.4 Scattering by a Homogeneous Dielectric Cylinder -- 10.3 Three-Dimensional Analysis -- 10.3.1 Formulation of Integral Equations -- 10.3.2 Scattering and Radiation by a Conducting Wire -- 10.3.3 Scattering by a Conducting Body -- 10.3.4 Scattering by a Homogeneous Dielectric Body -- 10.3.5 Scattering by an Inhomogeneous Dielectric Body -- 10.4 Analysis of Periodic Structures -- 10.4.1 Scattering by a Planar Periodic Conducting Patch Array -- 10.4.2 Scattering by a Discrete Body-of-Revolution Object -- 10.5 Analysis of Microstrip Antennas and Circuits -- 10.5.1 Formulation of Integral Equations -- 10.5.2 The Moment-Method Solution -- 10.5.3 Evaluation of Green's Functions -- 10.5.4 Far-Field Calculation and Application Examples -- 10.6 The Moment Method in the Time Domain -- 10.6.1 Time-Domain Integral Equations -- 10.6.2 Marching-On-in-Time Solution -- 10.7 Summary -- CHAPTER 11 FAST ALGORITHMS AND HYBRID TECHNIQUES -- 11.1 Introduction to Fast Algorithms -- 11.2 Conjugate Gradient-FFT Method -- 11.2.1 Scattering by a Conducting Strip or Wire -- 11.2.2 Scattering by a Conducting Plate -- 11.2.3 Scattering by a Dielectric Object -- 11.3 Adaptive Integral Method -- 11.3.1 Planar Structures -- 11.3.2 Three-Dimensional Objects -- 11.4 Fast Multipole Method -- 11.4.1 Two-Dimensional Analysis -- 11.4.2 Three-Dimensional Analysis -- 11.4.3 Multilevel Fast Multipole Algorithm -- 11.5 Adaptive Cross-Approximation Algorithm -- 11.5.1 Low-Rank Matrix -- 11.5.2 Adaptive Cross-Approximation -- 11.5.3 Application to the Moment-Method Solution -- 11.6 Introduction to Hybrid Techniques -- 11.7 Hybrid Finite Difference-Finite Element Method -- 11.7.1 Relation between FETD and FDTD -- 11.7.2 Hybridization of FETD and FDTD -- 11.7.3 Application Example -- 11.8 Hybrid Finite Element-Boundary Integral Method.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 11.8.1 Traditional Formulation -- 11.8.2 Symmetric Formulation -- 11.8.3 Numerical Examples -- 11.9 Summary -- CHAPTER 12 CONCLUDING REMARKS ON COMPUTATIONAL ELECTROMAGNETICS -- 12.1 Overview of Computational Electromagnetics -- 12.1.1 Frequency- versus Time-Domain Analysis -- 12.1.2 High-Frequency Asymptotic Techniques -- 12.1.3 First-Principle Numerical Methods -- 12.1.4 Time-Domain Simulation Methods -- 12.1.5 Hybrid Techniques -- 12.2 Applications of Computational Electromagnetics -- 12.3 Challenges in Computational Electromagnetics -- References -- APPENDIX -- Vector Identities -- Integral Theorems -- Coordinate Transformation -- INDEX.
520 ## - SUMMARY, ETC.
Summary, etc A unique textbook for both entry- and advanced-level graduate courseworkTheory and Computation of Electromagnetic Fields doubles as a textbook for both an entry-level graduate course on electromagnetics and an advanced-level graduate course on computational electromagnetics. It presents the fundamental concepts in a systematic manner so that students can advance from the first course to the second with little difficulty.The book consists of two parts. Part I covers the standard basic electromagnetic theory in a different manner than most texts; the contents cover both fundamental theories (such as vector analysis, Maxwell's equations and boundary conditions, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. Part II covers major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the finite difference method (and the finite difference time-domain method in particular), the finite element method, and the integral-equation-based moment method.Additional benefits of Theory and Computation of Electromagnetic Fields include:. Maxwell's equations as the starting point for the treatment of every subject. Added coverage of fast algorithms for solving integral equations and hybrid techniques for combining different numerical methods to seek more efficient solutions to complicated electromagnetic problems. Material designed for classroom teaching and self-learning in two semesters, and tested over fifteen years at the University of Illinois. Homework problems in every chapter to test and reinforce understanding of course material. Accompanying Instructor's GuideTheory and Computation of Electromagnetic Fields serves as a textbook for entry- and advanced-level graduate electrical engineering students. It is also an ideal reference for professional engineers who wish to brush up on their analysis and computation skills.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Electromagnetic fields
General subdivision Mathematics.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5628376
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- Wiley,
-- c2010.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2010]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
695 ## -
-- Antennas
695 ## -
-- Approximation methods
695 ## -
-- Artificial neural networks
695 ## -
-- Book reviews
695 ## -
-- Boundary conditions
695 ## -
-- Capacitance
695 ## -
-- Cavity resonators
695 ## -
-- Computational complexity
695 ## -
-- Computational electromagnetics
695 ## -
-- Conductors
695 ## -
-- Current
695 ## -
-- Differential equations
695 ## -
-- Diffraction
695 ## -
-- Electric potential
695 ## -
-- Electromagnetic fields
695 ## -
-- Electromagnetic radiation
695 ## -
-- Electromagnetic scattering
695 ## -
-- Electromagnetic waveguides
695 ## -
-- Electromagnetics
695 ## -
-- Equations
695 ## -
-- Finite difference methods
695 ## -
-- Finite element methods
695 ## -
-- Frequency domain analysis
695 ## -
-- Impedance
695 ## -
-- Indexes
695 ## -
-- Integral equations
695 ## -
-- Magnetic analysis
695 ## -
-- Magnetic domains
695 ## -
-- Magnetic resonance imaging
695 ## -
-- Magnetic separation
695 ## -
-- Magnetostatics
695 ## -
-- Manganese
695 ## -
-- Mathematical model
695 ## -
-- Maxwell equations
695 ## -
-- Memory management
695 ## -
-- Moment methods
695 ## -
-- Nickel
695 ## -
-- Partial differential equations
695 ## -
-- Poisson equations
695 ## -
-- Polynomials
695 ## -
-- Power transmission lines
695 ## -
-- Propagation
695 ## -
-- Propagation losses
695 ## -
-- Rectangular waveguides
695 ## -
-- Testing
695 ## -
-- Time domain analysis
695 ## -
-- Transmission line matrix methods
695 ## -
-- Transmission line theory
695 ## -
-- Wave functions

No items available.