Machine learning in image steganalysis / (Record no. 74260)

000 -LEADER
fixed length control field 06032nam a2201297 i 4500
001 - CONTROL NUMBER
control field 6331046
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205835.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151222s2012 njua ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781118437957
-- ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- Adobe PDF
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- ePub
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- Adobe PDF
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- ePub
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- MobiPocket
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- MobiPocket
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 00 - CLASSIFICATION NUMBER
Call Number 006.3/1
100 1# - AUTHOR NAME
Author Schaathun, Hans Georg,
245 10 - TITLE STATEMENT
Title Machine learning in image steganalysis /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (x, 284 pages) :
490 1# - SERIES STATEMENT
Series statement Wiley - IEEE
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Front Matter -- Overview. Introduction -- Steganography and Steganalysis -- Getting Started with a Classifier -- Features. Histogram Analysis -- Bit-Plane Analysis -- More Spatial Domain Features -- The Wavelets Domain -- Steganalysis in the JPEG Domain -- Calibration Techniques -- Classifiers. Simulation and Evaluation -- Support Vector Machines -- Other Classification Algorithms -- Feature Selection and Evaluation -- The Steganalysis Problem -- Future of the Field -- Bibliography -- Index.
520 ## - SUMMARY, ETC.
Summary, etc Steganography is the art of communicating a secret message, hiding the very existence of a secret message. This is typically done by hiding the message within a non-sensitive document. Steganalysis is the art and science of detecting such hidden messages. The task in steganalysis is to take an object (communication) and classify it as either a steganogram or a clean document. Most recent solutions apply classification algorithms from machine learning and pattern recognition, which tackle problems too complex for analytical solution by teaching computers to learn from empirical data. Part 1of the book is an introduction to steganalysis as part of the wider trend of multimedia forensics, as well as a practical tutorial on machine learning in this context. Part 2 is a survey of a wide range of feature vectors proposed for steganalysis with performance tests and comparisons. Part 3 is an in-depth study of machine learning techniques and classifier algorithms, and presents a critical assessment of the experimental methodology and applications in steganalysis.Key features: . Serves as a tutorial on the topic of steganalysis with brief introductions to much of the basic theory provided, and also presents a survey of the latest research.. Develops and formalises the application of machine learning in steganalysis; with much of the understanding of machine learning to be gained from this book adaptable for future study of machine learning in other applications. . Contains Python programs and algorithms to allow the reader to modify and reproduce outcomes discussed in the book.. Includes companion software available from the author's website.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Machine learning.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Wavelets (Mathematics)
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Data encryption (Computer science)
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6331046
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Chichester, West Sussex, U.K. :
-- John Wiley,
-- 2012.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2012]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/22/2015.
695 ## -
-- Calibration
695 ## -
-- Cameras
695 ## -
-- Communities
695 ## -
-- Computers
695 ## -
-- Context
695 ## -
-- Convolution
695 ## -
-- Correlation
695 ## -
-- Discrete cosine transforms
695 ## -
-- Discrete wavelet transforms
695 ## -
-- Encryption
695 ## -
-- Error analysis
695 ## -
-- Error probability
695 ## -
-- Feature extraction
695 ## -
-- Forensics
695 ## -
-- Histograms
695 ## -
-- History
695 ## -
-- Image coding
695 ## -
-- Image color analysis
695 ## -
-- Indexes
695 ## -
-- Integrated circuits
695 ## -
-- Joints
695 ## -
-- Kernel
695 ## -
-- Learning systems
695 ## -
-- Machine learning
695 ## -
-- Machine learning algorithms
695 ## -
-- Markov processes
695 ## -
-- Media
695 ## -
-- Monitoring
695 ## -
-- Monte Carlo methods
695 ## -
-- Noise
695 ## -
-- Presses
695 ## -
-- Printers
695 ## -
-- Probability
695 ## -
-- Probability distribution
695 ## -
-- Quantization
695 ## -
-- Random processes
695 ## -
-- Robots
695 ## -
-- Sociology
695 ## -
-- Software
695 ## -
-- Standards
695 ## -
-- Streaming media
695 ## -
-- Support vector machine classification
695 ## -
-- Support vector machines
695 ## -
-- Testing
695 ## -
-- Training
695 ## -
-- Transform coding
695 ## -
-- Transforms
695 ## -
-- Unsolicited electronic mail
695 ## -
-- Vectors
695 ## -
-- Visualization
695 ## -
-- Wavelet domain
695 ## -
-- Writing
695 ## -
-- Accuracy
695 ## -
-- Additives
695 ## -
-- Algorithm design and analysis
695 ## -
-- Analysis of variance
695 ## -
-- Bayesian methods
695 ## -
-- Bibliographies

No items available.