Future trends in microelectronics : (Record no. 74482)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 10778nam a2202029 i 4500 |
001 - CONTROL NUMBER | |
control field | 7753056 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20220712205940.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 170118s2016 njua ob 001 eng d |
015 ## - NATIONAL BIBLIOGRAPHY NUMBER | |
-- | GBA6A5950 (print) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
ISBN | 9781119069225 |
-- | electronic |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | Paper |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | Paper |
082 00 - CLASSIFICATION NUMBER | |
Call Number | 621.381 |
245 10 - TITLE STATEMENT | |
Title | Future trends in microelectronics : |
Sub Title | up the nano creek / |
300 ## - PHYSICAL DESCRIPTION | |
Number of Pages | 1 PDF (xiv, 459 pages) : |
500 ## - GENERAL NOTE | |
Remark 1 | "This book is a brainchild of the fifth workshop in the Future Trends in Microelectronics series (FTM-5) ... on Crete, Greece, in June of 2006"--Pref. |
505 0# - FORMATTED CONTENTS NOTE | |
Remark 2 | Preface / S. Luryi, J. M. Xu, and A. Zaslavsky ix -- I FUTURE OF DIGITAL SILICON 1 -- Prospects of Future Si Technologies in the Data-Driven World 4 / K. Kim and G. Jeong -- How Lithography Enables Moore's Law 21 / J. P. H. Benschop -- What Happened to Post-CMOS? 31 / P. M. Solomon -- Three-Dimensional Integration of Ge and Two-Dimensional: Materials for One-Dimensional Devices 46 / M. �Ostling, E. Dentoni Litta, and P.-E. Hellstr�om -- Challenges to Ultra-Low-Power Semiconductor Device Operation 62 / F. Balestra -- A Universal Nonvolatile Processing Environment 74 / T. Windbacher, A. Makarov, V. Sverdlov, and S. Selberherr -- Can MRAM (Finally) Be a Factor? 82 / J.-P. Nozi�eres -- Nanomanufacturing for Electronics or Optoelectronics 91 / M. J. Kelly -- II NEW MATERIALS AND NEW PHYSICS 99 -- Surface Waves Everywhere 102 / M. I. Dyakonov -- Graphene and Atom-Thick Two-Dimensional Materials: Device Application Prospects 114 / S. Hwang, J. Heo, M.-H. Lee, K.-E. Byun, Y. Cho, and S. Park -- Computing with Coupled Relaxation Oscillators 131 / N. Shukla, A. Parihar, A. Raychowdhury, and S. Datta -- On the Field-Induced Insulator-Metal Transition in VO2 Films 140 / S. Luryi and B. Spivak -- Group IV Alloys for Advanced Nano- and Optoelectronic Applications 150 / D. GrŠutzmacher -- High-Sn Content GeSn Light Emitters for Silicon Photonics 162 / D. Stange, C. Schulte-Braucks, N. von den Driesch, S. Wirths, R. Geiger, T. Zabel, G. Mussler, S. Lenk, T. Stoica, J. M. Hartmann, H. Sigg, Z. Ikonic, S. Mantl, D. GrŠutzmacher, and D. Buca -- Gallium Nitride-Based Lateral and Vertical Nanowire Devices 174 / Y.-W. Jo, D.-H. Son, K.-S. Im, and J.-H. Lee -- Scribing Graphene Circuits 183 / N. Rodriguez, R. J. Ruiz, C. Marquez, and F. Gamiz -- Structure and Electron Transport in Irradiated Monolayer Graphene 193 -- I. Shlimak, A. V. Butenko, E. Zion, V. Richter, Yu. Kaganovskii, L. Wolfson, A. Sharoni, A. Haran, D. Naveh, E. Kogan, and M. Kaveh -- Interplay of Coulomb Blockade and Luttinger-Liquid Physics in Disordered One-Dimensional InAs Nanowires with Strong Spin Orbit Coupling 206 / R. Hevroni, V. Shelukhin, M. Karpovski, M. Goldstein, E. Sela, A. Palevski, and H. Shtrikman. |
505 8# - FORMATTED CONTENTS NOTE | |
Remark 2 | III MICROELECTRONICS IN HEALTH, ENERGY HARVESTING, AND COMMUNICATIONS 215 -- Image-Guided Intervention and Therapy: The First Time Right 218 / B. H. W. Hendriks, D. Mioni, W. Crooijmans, and H. van Houten -- Rewiring the Nervous System, Without Wires 231 / D. A. Borton -- Nano-Power Integrated Electronics for Energy Harvesting, Conversion and Management 245 / A. Romani, M. Dini, M. Filippi, M. Tartagni, and E. Sangiorgi -- Will Composite Nanomaterials Replace Piezoelectric Thin Films for Energy Transduction Applications 259 / R. Tao, G. Ardila, R. Hinchet, A. Michard, L. Mont�es, and M. Mouis -- New Generation of Vertical Cavity Surface Emitting Lasers for Optical Interconnects 273 / N. Ledentsov Jr., V. A. Shchukin, N. N. Ledentsov, J.-R. Kopp, S. Burger, and F. Schmidt -- Reconfigurable Infrared Photodetector Based on Asymmetrically Doped Double Quantum Wells for Multicolor and Remote Temperature Sensing 289 / X. Zhang, V. Mitin, G. Thomain, T. Yore, Y. Li, J. K. Choi, K. Sablon, and A. Sergeev -- Tunable Photonic Molecules for Spectral Engineering in Dense Photonic Integration 298 / M. C. M. M. Souza, G. F. M. Rezende, A. A. G. von Zuben, G. S. Wiederhecker, N. C. Frateschi, and L. A. M. Barea -- INDEX 307. |
520 ## - SUMMARY, ETC. | |
Summary, etc | Presents the developments in microelectronic-related fields, with comprehensive insight from a number of leading industry professionals The book presents the future developments and innovations in the developing field of microelectronics. The book's chapters contain contributions from various authors, all of whom are leading industry professionals affiliated either with top universities, major semiconductor companies, or government laboratories, discussing the evolution of their profession. A wide range of microelectronic-related fields are examined, including solid-state electronics, material science, optoelectronics, bioelectronics, and renewable energies. The topics covered range from fundamental physical principles, materials and device technologies, and major new market opportunities. . Describes the expansion of the field into hot topics such as energy (photovoltaics) and medicine (bio-nanotechnology). Provides contributions from leading industry professionals in semiconductor micro- and nano-electronics. Discusses the importance of micro- and nano-electronics in today's rapidly changing and expanding information society Future Trends in Microelectronics: Journey into the Unknown is written for industry professionals and graduate students in engineering, physics, and nanotechnology. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Nanotechnology |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Microelectronics |
700 1# - AUTHOR 2 | |
Author 2 | Luryi, Serge. |
700 1# - AUTHOR 2 | |
Author 2 | Xu, Jimmy. |
700 1# - AUTHOR 2 | |
Author 2 | Zaslavsky, Alex, |
856 42 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7753056 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | eBooks |
264 #1 - | |
-- | Hoboken, New Jersey : |
-- | Wiley-Interscience, |
-- | c2007. |
264 #2 - | |
-- | [Piscataqay, New Jersey] : |
-- | IEEE Xplore, |
-- | [2016] |
336 ## - | |
-- | text |
-- | rdacontent |
337 ## - | |
-- | electronic |
-- | isbdmedia |
338 ## - | |
-- | online resource |
-- | rdacarrier |
588 ## - | |
-- | Description based on PDF viewed 01/18/2017. |
695 ## - | |
-- | Time-domain analysis |
695 ## - | |
-- | Torque |
695 ## - | |
-- | Transducers |
695 ## - | |
-- | Tunneling |
695 ## - | |
-- | Tunneling magnetoresistance |
695 ## - | |
-- | Two dimensional displays |
695 ## - | |
-- | Vanadium |
695 ## - | |
-- | Vertical cavity surface emitting lasers |
695 ## - | |
-- | Voltage control |
695 ## - | |
-- | Voltage measurement |
695 ## - | |
-- | Wet etching |
695 ## - | |
-- | Wireless communication |
695 ## - | |
-- | Wireless sensor networks |
695 ## - | |
-- | Wires |
695 ## - | |
-- | X-ray imaging |
695 ## - | |
-- | Zinc oxide |
695 ## - | |
-- | Apertures |
695 ## - | |
-- | CMOS technology |
695 ## - | |
-- | Capacitance |
695 ## - | |
-- | Capacitors |
695 ## - | |
-- | Catheters |
695 ## - | |
-- | Cavity resonators |
695 ## - | |
-- | Clocks |
695 ## - | |
-- | Computed tomography |
695 ## - | |
-- | Conductivity |
695 ## - | |
-- | Couplings |
695 ## - | |
-- | Crystals |
695 ## - | |
-- | Dark current |
695 ## - | |
-- | Data communication |
695 ## - | |
-- | Detectors |
695 ## - | |
-- | Dielectric constant |
695 ## - | |
-- | Dielectrics |
695 ## - | |
-- | Dispersion |
695 ## - | |
-- | Electric fields |
695 ## - | |
-- | Electrostatics |
695 ## - | |
-- | Energy harvesting |
695 ## - | |
-- | Fabrication |
695 ## - | |
-- | Field effect transistors |
695 ## - | |
-- | Films |
695 ## - | |
-- | Flip-flops |
695 ## - | |
-- | Gallium |
695 ## - | |
-- | Gallium arsenide |
695 ## - | |
-- | Gallium nitride |
695 ## - | |
-- | Graphene |
695 ## - | |
-- | Gravity |
695 ## - | |
-- | HEMTs |
695 ## - | |
-- | Heart |
695 ## - | |
-- | II-VI semiconductor materials |
695 ## - | |
-- | Integrated circuit interconnections |
695 ## - | |
-- | Integrated circuits |
695 ## - | |
-- | Integrated optics |
695 ## - | |
-- | Ions |
695 ## - | |
-- | Laser beams |
695 ## - | |
-- | Laser modes |
695 ## - | |
-- | Lenses |
695 ## - | |
-- | Light emitting diodes |
695 ## - | |
-- | Lithography |
695 ## - | |
-- | Logic gates |
695 ## - | |
-- | MOSFET |
695 ## - | |
-- | Magnetic anisotropy |
695 ## - | |
-- | Magnetic separation |
695 ## - | |
-- | Magnetic tunneling |
695 ## - | |
-- | Magnetization |
695 ## - | |
-- | Market research |
695 ## - | |
-- | Mechanical factors |
695 ## - | |
-- | Medical treatment |
695 ## - | |
-- | Metals |
695 ## - | |
-- | Microelectronics |
695 ## - | |
-- | Nanoscale devices |
695 ## - | |
-- | Nanowires |
695 ## - | |
-- | Nonvolatile memory |
695 ## - | |
-- | Optical coupling |
695 ## - | |
-- | Optical device fabrication |
695 ## - | |
-- | Optical filters |
695 ## - | |
-- | Optical imaging |
695 ## - | |
-- | Optical refraction |
695 ## - | |
-- | Optical resonators |
695 ## - | |
-- | Optical surface waves |
695 ## - | |
-- | Optical variables control |
695 ## - | |
-- | Optical waveguides |
695 ## - | |
-- | Orbits |
695 ## - | |
-- | Oscillators |
695 ## - | |
-- | Performance evaluation |
695 ## - | |
-- | Perpendicular magnetic anisotropy |
695 ## - | |
-- | Photoconductivity |
695 ## - | |
-- | Photonic band gap |
695 ## - | |
-- | Photonics |
695 ## - | |
-- | Physics |
695 ## - | |
-- | Piezoelectric materials |
695 ## - | |
-- | Plasmas |
695 ## - | |
-- | Power demand |
695 ## - | |
-- | Probes |
695 ## - | |
-- | Process control |
695 ## - | |
-- | Production |
695 ## - | |
-- | Radiation effects |
695 ## - | |
-- | Raman scattering |
695 ## - | |
-- | Random access memory |
695 ## - | |
-- | Real-time systems |
695 ## - | |
-- | Reliability |
695 ## - | |
-- | Sea surface |
695 ## - | |
-- | Self-assembly |
695 ## - | |
-- | Sensors |
695 ## - | |
-- | Shape |
695 ## - | |
-- | Silicon |
695 ## - | |
-- | Silicon photonics |
695 ## - | |
-- | Spinal cord |
695 ## - | |
-- | Split gate flash memory cells |
695 ## - | |
-- | Strain |
695 ## - | |
-- | Substrates |
695 ## - | |
-- | Surface acoustic waves |
695 ## - | |
-- | Surface treatment |
695 ## - | |
-- | Switches |
695 ## - | |
-- | Switching circuits |
695 ## - | |
-- | Synchronization |
695 ## - | |
-- | Temperature |
695 ## - | |
-- | Temperature dependence |
695 ## - | |
-- | Temperature measurement |
695 ## - | |
-- | Temperature sensors |
695 ## - | |
-- | Three-dimensional displays |
No items available.