Artificial Intelligence in Label-free Microscopy (Record no. 75492)

000 -LEADER
fixed length control field 03637nam a22005655i 4500
001 - CONTROL NUMBER
control field 978-3-319-51448-2
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220801213709.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 170420s2017 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783319514482
-- 978-3-319-51448-2
082 04 - CLASSIFICATION NUMBER
Call Number 610.28
100 1# - AUTHOR NAME
Author Mahjoubfar, Ata.
245 10 - TITLE STATEMENT
Title Artificial Intelligence in Label-free Microscopy
Sub Title Biological Cell Classification by Time Stretch /
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2017.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XXXIII, 134 p. 52 illus. in color.
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Introduction -- Background -- Nanometer-resolved imaging vibrometer -- Three-dimensional ultrafast laser scanner -- Label-free High-throughput Phenotypic Screening -- Time Stretch Quantitative Phase Imaging -- Big data acquisition and processing in real-time -- Deep Learning and Classification -- Optical Data Compression in Time Stretch Imaging -- Design of Warped Stretch Transform -- Concluding Remarks and Future Work -- References.
520 ## - SUMMARY, ETC.
Summary, etc This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis. • Demonstrates how machine learning is used in high-speed microscopy imaging to facilitate medical diagnosis; • Provides a systematic and comprehensive illustration of time stretch technology; • Enables multidisciplinary application, including industrial, biomedical, and artificial intelligence.
700 1# - AUTHOR 2
Author 2 Chen, Claire Lifan.
700 1# - AUTHOR 2
Author 2 Jalali, Bahram.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-319-51448-2
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2017.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Biomedical engineering.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Electronics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computer vision.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Bioinformatics.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Biomedical Engineering and Bioengineering.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Electronics and Microelectronics, Instrumentation.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computer Vision.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Bioinformatics.
912 ## -
-- ZDB-2-ENG
912 ## -
-- ZDB-2-SXE

No items available.