Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings (Record no. 76916)

000 -LEADER
fixed length control field 03156nam a22005655i 4500
001 - CONTROL NUMBER
control field 978-3-319-98675-3
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220801214930.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180823s2019 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783319986753
-- 978-3-319-98675-3
082 04 - CLASSIFICATION NUMBER
Call Number 610.28
100 1# - AUTHOR NAME
Author Pham, Thuy T.
245 10 - TITLE STATEMENT
Title Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2019.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XV, 107 p. 35 illus., 32 illus. in color.
490 1# - SERIES STATEMENT
Series statement Springer Theses, Recognizing Outstanding Ph.D. Research,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Introduction -- Background -- Algorithms -- Point Anomaly Detection: Application to Freezing of Gait Monitoring -- Collective Anomaly Detection: Application to Respiratory Artefact Removals -- Spike Sorting: Application to Motor Unit Action Potential Discrimination -- Conclusion .
520 ## - SUMMARY, ETC.
Summary, etc This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-319-98675-3
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2019.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Biomedical engineering.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data mining.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computational intelligence.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Bioinformatics.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Biomedical Engineering and Bioengineering.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data Mining and Knowledge Discovery.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computational Intelligence.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Bioinformatics.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 2190-5061
912 ## -
-- ZDB-2-ENG
912 ## -
-- ZDB-2-SXE

No items available.