Big Data Analytics Methods : (Record no. 84408)

000 -LEADER
fixed length control field 05718nam a22009495i 4500
001 - CONTROL NUMBER
control field 9781547401567
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240730161520.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230127t20192020gw fo d z eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781547401567
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title
084 ## - OTHER CLASSIFICATION NUMBER
-- (DE-625)rvk/143679:
100 1# - AUTHOR NAME
Author Ghavami, Peter,
245 10 - TITLE STATEMENT
Title Big Data Analytics Methods :
Sub Title Analytics Techniques in Data Mining, Deep Learning and Natural Language Processing /
250 ## - EDITION STATEMENT
Edition statement 2nd Edition
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 online resource (XVI, 238 p.)
520 ## - SUMMARY, ETC.
Summary, etc Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1515/9781547401567
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://www.degruyter.com/isbn/9781547401567
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://www.degruyter.com/document/cover/isbn/9781547401567/original
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Berlin ;
-- Boston :
-- De Gruyter,
-- [2019]
264 #4 -
-- ©2020
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
588 0# -
-- Description based on online resource; title from PDF title page (publisher's Web site, viewed 27. Jan 2023)
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- BUSINESS & ECONOMICS / Information Management.
912 ## -
-- 978-3-11-061015-4 EBOOK PACKAGE Engineering, Computer Sciences 2019 English
-- 2019
912 ## -
-- 978-3-11-061076-5 EBOOK PACKAGE COMPLETE 2019 English
-- 2019
912 ## -
-- 978-3-11-069627-1 DG Plus DeG Package 2020 Part 1
-- 2020
912 ## -
-- 978-3-11-069628-8 DG Ebook Package English 2020
-- 2020
912 ## -
-- EBA_BACKALL
912 ## -
-- EBA_CL_CHCOMSGSEN
912 ## -
-- EBA_CL_LAEC
912 ## -
-- EBA_DGALL
912 ## -
-- EBA_EBACKALL
912 ## -
-- EBA_EBKALL
912 ## -
-- EBA_ECL_CHCOMSGSEN
912 ## -
-- EBA_ECL_LAEC
912 ## -
-- EBA_EEBKALL
912 ## -
-- EBA_ESSHALL
912 ## -
-- EBA_ESTMALL
912 ## -
-- EBA_SSHALL
912 ## -
-- EBA_STMALL
912 ## -
-- GBV-deGruyter-alles
912 ## -
-- PDA11SSHE
912 ## -
-- PDA12STME
912 ## -
-- PDA13ENGE
912 ## -
-- PDA17SSHEE
912 ## -
-- PDA18STMEE
912 ## -
-- PDA5EBK
912 ## -
-- ZDB-23-DEI
-- 2019
912 ## -
-- ZDB-23-DGG
-- 2019

No items available.