Geodesic Beams in Eigenfunction Analysis (Record no. 85715)

000 -LEADER
fixed length control field 03545nam a22005655i 4500
001 - CONTROL NUMBER
control field 978-3-031-31586-2
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240730164503.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230613s2023 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783031315862
-- 978-3-031-31586-2
082 04 - CLASSIFICATION NUMBER
Call Number 530.15
100 1# - AUTHOR NAME
Author Canzani, Yaiza.
245 10 - TITLE STATEMENT
Title Geodesic Beams in Eigenfunction Analysis
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2023.
300 ## - PHYSICAL DESCRIPTION
Number of Pages X, 116 p. 19 illus., 6 illus. in color.
490 1# - SERIES STATEMENT
Series statement Synthesis Lectures on Mathematics & Statistics,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Introduction -- The Laplace operator -- Axiomatic introduction to semiclassical analysis -- Basic properties of eigenfunctions and eigenvalues -- The Koch-Tataru-Zworski approach to L∞ estimates -- Geodesic Beam Tools -- Applications of the geodesic beam decomposition -- Dynamical ideas.
520 ## - SUMMARY, ETC.
Summary, etc This book discusses the modern theory of Laplace eigenfunctions through the lens of a new tool called geodesic beams. The authors provide a brief introduction to the theory of Laplace eigenfunctions followed by an accessible treatment of geodesic beams and their applications to sup norm estimates, L^p estimates, averages, and Weyl laws. Geodesic beams have proven to be a valuable tool in the study of Laplace eigenfunctions, but their treatment is currently spread through a variety of rather technical papers. The authors present a treatment of these tools that is accessible to a wider audience of mathematicians. Readers will gain an introduction to geodesic beams and the modern theory of Laplace eigenfunctions, which will enable them to understand the cutting edge aspects of this theory. This book: Reviews several physical phenomena related to Laplace eigenfunctions, ranging from the propagation of waves to the location of quantum particles; Introduces the cutting edge theory and microlocal methods of geodesic beams; Discusses how eigenfunctions of the Laplacian play a crucial role both in physics and mathematics.
700 1# - AUTHOR 2
Author 2 Galkowski, Jeffrey.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-031-31586-2
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2023.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematical physics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Quantum physics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Nuclear physics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematics.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematical Methods in Physics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Quantum Physics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Nuclear and Particle Physics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematical Physics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematics.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 1938-1751
912 ## -
-- ZDB-2-SXSC

No items available.