Probabilistic Approaches to Recommendations (Record no. 86141)

000 -LEADER
fixed length control field 04680nam a22005295i 4500
001 - CONTROL NUMBER
control field 978-3-031-01906-7
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240730165154.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220601s2014 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783031019067
-- 978-3-031-01906-7
082 04 - CLASSIFICATION NUMBER
Call Number 006.312
100 1# - AUTHOR NAME
Author Barbieri, Nicola.
245 10 - TITLE STATEMENT
Title Probabilistic Approaches to Recommendations
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2014.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XV, 181 p.
490 1# - SERIES STATEMENT
Series statement Synthesis Lectures on Data Mining and Knowledge Discovery,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- The Recommendation Process -- Probabilistic Models for Collaborative Filtering -- Bayesian Modeling -- Exploiting Probabilistic Models -- Contextual Information -- Social Recommender Systems -- Conclusions -- Bibliography -- Authors' Biographies .
520 ## - SUMMARY, ETC.
Summary, etc The importance of accurate recommender systems has been widely recognized by academia and industry, and recommendation is rapidly becoming one of the most successful applications of data mining and machine learning. Understanding and predicting the choices and preferences of users is a challenging task: real-world scenarios involve users behaving in complex situations, where prior beliefs, specific tendencies, and reciprocal influences jointly contribute to determining the preferences of users toward huge amounts of information, services, and products. Probabilistic modeling represents a robust formal mathematical framework to model these assumptions and study their effects in the recommendation process. This book starts with a brief summary of the recommendation problem and its challenges and a review of some widely used techniques Next, we introduce and discuss probabilistic approaches for modeling preference data. We focus our attention on methods based on latent factors, such as mixture models, probabilistic matrix factorization, and topic models, for explicit and implicit preference data. These methods represent a significant advance in the research and technology of recommendation. The resulting models allow us to identify complex patterns in preference data, which can be exploited to predict future purchases effectively. The extreme sparsity of preference data poses serious challenges to the modeling of user preferences, especially in the cases where few observations are available. Bayesian inference techniques elegantly address the need for regularization, and their integration with latent factor modeling helps to boost the performances of the basic techniques. We summarize the strengths and weakness of several approaches by considering two different but related evaluation perspectives, namely, rating prediction and recommendation accuracy. Furthermore, we describe how probabilistic methods based on latent factors enable the exploitation of preference patterns in novel applications beyond rating prediction or recommendation accuracy. We finally discuss the application of probabilistic techniques in two additional scenarios, characterized by the availability of side information besides preference data. In summary, the book categorizes the myriad probabilistic approaches to recommendations and provides guidelines for their adoption in real-world situations.
700 1# - AUTHOR 2
Author 2 Manco, Giuseppe.
700 1# - AUTHOR 2
Author 2 Ritacco, Ettore.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-031-01906-7
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2014.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data mining.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Statistics .
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data Mining and Knowledge Discovery.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Statistics.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 2151-0075
912 ## -
-- ZDB-2-SXSC

No items available.