Normal view MARC view ISBD view

Social Network-Based Recommender Systems [electronic resource] / by Daniel Schall.

By: Schall, Daniel [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Cham : Springer International Publishing : Imprint: Springer, 2015Edition: 1st ed. 2015.Description: XIII, 126 p. 42 illus., 35 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319227351.Subject(s): Computer science | Application software | Graph theory | Computer Science | Information Systems Applications (incl. Internet) | Graph Theory | Computer Appl. in Social and Behavioral SciencesAdditional physical formats: Printed edition:: No titleDDC classification: 005.7 Online resources: Click here to access online
Contents:
Overview of Social Recommender Systems -- Link Prediction for Directed Graphs -- Follow Recommendation in Communities -- Partner Recommendation -- Social Broker Recommendation -- Conclusion.
In: Springer eBooksSummary: This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on 'social brokers' are presented. Chapters cover a wide range of models and algorithms, including graph models and a personalized PageRank model. Extensive experiments and scenarios using real world datasets from GitHub, Facebook, Twitter, Google Plus and the European Union ICT research collaborations serve to enhance reader understanding of the material with clear applications. Each chapter concludes with an analysis and detailed summary. Social Network-Based Recommender Systems is designed as a reference for professionals and researchers working in social network analysis and companies working on recommender systems. Advanced-level students studying computer science, statistics or mathematics will also find this books useful as a secondary text.
    average rating: 0.0 (0 votes)
No physical items for this record

Overview of Social Recommender Systems -- Link Prediction for Directed Graphs -- Follow Recommendation in Communities -- Partner Recommendation -- Social Broker Recommendation -- Conclusion.

This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on 'social brokers' are presented. Chapters cover a wide range of models and algorithms, including graph models and a personalized PageRank model. Extensive experiments and scenarios using real world datasets from GitHub, Facebook, Twitter, Google Plus and the European Union ICT research collaborations serve to enhance reader understanding of the material with clear applications. Each chapter concludes with an analysis and detailed summary. Social Network-Based Recommender Systems is designed as a reference for professionals and researchers working in social network analysis and companies working on recommender systems. Advanced-level students studying computer science, statistics or mathematics will also find this books useful as a secondary text.

There are no comments for this item.

Log in to your account to post a comment.