Normal view MARC view ISBD view

Design and Testing of Digital Microfluidic Biochips [electronic resource] / by Yang Zhao, Krishnendu Chakrabarty.

By: Zhao, Yang [author.].
Contributor(s): Chakrabarty, Krishnendu [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: New York, NY : Springer New York : Imprint: Springer, 2013Description: XII, 204 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9781461403708.Subject(s): Engineering | Electronics | Microelectronics | Electronic circuits | Biomedical engineering | Engineering | Circuits and Systems | Biomedical Engineering | Electronics and Microelectronics, InstrumentationAdditional physical formats: Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Introduction -- Cross-Contamination Avoidance for Droplet Routing -- Synchronization of Concurrently-Implemented Fluidic Operations in Pin-Constrained Biochips -- Optimization of Droplet Routing and Control-Pin Mapping to Electrodes -- Built-In Self Test and Diagnosis -- On-Line Testing and Test Generation -- Integrated Control-Path Design and Error Recovery -- Conclusions.
In: Springer eBooksSummary: This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  .
    average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Cross-Contamination Avoidance for Droplet Routing -- Synchronization of Concurrently-Implemented Fluidic Operations in Pin-Constrained Biochips -- Optimization of Droplet Routing and Control-Pin Mapping to Electrodes -- Built-In Self Test and Diagnosis -- On-Line Testing and Test Generation -- Integrated Control-Path Design and Error Recovery -- Conclusions.

This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  .

There are no comments for this item.

Log in to your account to post a comment.