Diophantine methods, lattices, and arithmetic theory of quadratic forms : [electronic resource] international workshop, Banff Iternational Research Station, November 13-18, 2011, Banff, Alberta, Canada / Wai Kiu Chan, Lenny Fukshansky, Rainer Schulze-Pillot, Jeffrey D. Vaaler, editors.
By: International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms (2011 : Banff, Alta.).
Contributor(s): Chan, Wai Kiu [editor of compilation.] | Fukshansky, Lenny [editor of compilation.] | Schulze-Pillot, Rainer [editor of compilation.] | Vaaler, Jeffrey D [editor of compilation.].
Material type: BookSeries: Contemporary mathematics, v. 587.Publisher: Providence, Rhode Island : American Mathematical Society, [2013]Description: 1 online resource (xii, 243 pages).Content type: text Media type: unmediated Carrier type: volumeISBN: 9780821895030 (online).Subject(s): Linear algebraic groups | Forms, Quadratic | Number theory | Number theory -- Forms and linear algebraic groups -- Forms and linear algebraic groups | Number theory -- Geometry of numbers -- Geometry of numbers | Number theory -- Arithmetic algebraic geometry (Diophantine geometry) -- Heights | Number theory -- Diophantine equations -- Quadratic and bilinear equationsAdditional physical formats: Diophantine methods, lattices, and arithmetic theory of quadratic forms :DDC classification: 512.7/4 Other classification: 11Exx | 11Hxx | 11G50 | 11D09 Online resources: Contents | ContentsIncludes bibliographical references.
Boris Venkov's Theory of Lattices and Spherical Designs / Gabriele Nebe -- Generalized Theta Series and Spherical Designs / Juan M. Cervi�no and Georg Hein -- Representations of integral quadratic polynomials / Wai Kiu Chan and Byeong-Kweon Oh -- Dense lattices as Hermitian tensor products / Renaud Coulangeon and Gabriele Nebe -- Small zeros of homogeneous cubic congruences / Rainer Dietmann -- Strictly Regular Diagonal Positive Definite Quaternary Integral Quadratic Forms / A. G. Earnest and Ji Young Kim -- Heights and quadratic forms: Cassels' theorem and its generalizations / Lenny Fukshansky -- On the positive integers $n$ satisfying the equation $F_n = x^2 + n y^2$ / Juan Jos�e Alba Gonz�alez and Florian Luca -- Algorithms for computing maximal lattices in bilinear (and quadratic) spaces over number fields / Jonathan Hanke -- $p$-adic Zeros of Systems of Quadratic Forms / D. R. Heath-Brown -- The Number of Function Fields with Given Genus / David Kettlestrings and Jeffrey Lin Thunder -- Unique Factorization in the Theory of Quadratic Forms / Gregory T. Minton -- Golden lattices / Gabriele Nebe -- The extremal lattice of dimension 14, level 7 and its genus / Rudolf Scharlau -- Strict Periodic Extreme Lattices / Achill Sch�urmann -- Exceptional units and cyclic resultants, II / C. L. Stewart -- A note on generators of number fields / Jeffrey D. Vaaler and Martin Widmer -- Vorono�i's reduction theory of $GL_n$ over a totally real number field / Takao Watanabe, Syouji Yano and Takuma Hayashi -- Some comments about Indefinite LLL / Mark Watkins --
http://dx.doi.org/10.1090/conm/587/11672
http://dx.doi.org/10.1090/conm/587/11683
http://dx.doi.org/10.1090/conm/587/11684
http://dx.doi.org/10.1090/conm/587/11675
http://dx.doi.org/10.1090/conm/587/11685
http://dx.doi.org/10.1090/conm/587/11682
http://dx.doi.org/10.1090/conm/587/11673
http://dx.doi.org/10.1090/conm/587/11677
http://dx.doi.org/10.1090/conm/587/11697
http://dx.doi.org/10.1090/conm/587/11678
http://dx.doi.org/10.1090/conm/587/11679
http://dx.doi.org/10.1090/conm/587/11681
http://dx.doi.org/10.1090/conm/587/11676
http://dx.doi.org/10.1090/conm/587/11696
http://dx.doi.org/10.1090/conm/587/11686
http://dx.doi.org/10.1090/conm/587/11698
http://dx.doi.org/10.1090/conm/587/11695
http://dx.doi.org/10.1090/conm/587/11680
http://dx.doi.org/10.1090/conm/587/11674
Access is restricted to licensed institutions
Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2013
Mode of access : World Wide Web
Description based on print version record.
There are no comments for this item.