Normal view MARC view ISBD view

Nonlinear wave equations : [electronic resource] analytic and computational techniques : AMS Special Session on Nonlinear Waves and Integrable Systems : April 13-14, 2013, Boulder, CO / Christopher W. Curtis, Anton Dzhamay, Willy A. Hereman, Barbara Prinari, editors.

Contributor(s): Curtis, Christopher W [editor] | Dzhamay, Anton, 1970- [editor.] | Hereman, Willy A, 1954- [editor.] | Prinari, B, 1972- [editor.].
Material type: materialTypeLabelBookSeries: Contemporary mathematics, v. 635.Publisher: Providence, Rhode Island : American Mathematical Society, [2015]Description: 1 online resource (pages cm.).Content type: text Media type: unmediated Carrier type: volumeSubject(s): Nonlinear wave equations | Partial differential equations -- Spectral theory and eigenvalue problems -- Scattering theory | Operator theory -- General theory of linear operators -- Scattering theory | Partial differential equations -- Equations of mathematical physics and other areas of application -- Soliton-like equations | Partial differential equations -- Equations of mathematical physics and other areas of application -- KdV-like equations (Korteweg-de Vries) | Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with fluid mechanics | Dynamical systems and ergodic theory -- Infinite-dimensional Hamiltonian systems -- Soliton theory, asymptotic behavior of solutions | Dynamical systems and ergodic theory -- Infinite-dimensional Hamiltonian systems -- Integration of completely integrable systems by inverse spectral and scattering methods | Numerical analysis -- Partial differential equations, initial value and time-dependent initial-boundary value problems -- Spectral, collocation and related methods | Numerical analysis -- Partial differential equations, initial value and time-dependent initial-boundary value problems -- Fictitious domain methodsAdditional physical formats: Nonlinear wave equations :DDC classification: 515/.353 Other classification: 35P25 | 47A40 | 35Q51 | 35Q53 | 35Q55 | 35Q35 | 37K40 | 37K15 | 65M70 | 65M85 Online resources: Contents | Contents
Contents:
Recurrence in the Korteweg-de Vries equation? / Ben Herbst, Garrett Nieddu and A. David Trubatch -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12677 On the Location of the Discrete Eigenvalues for Defocusing Zakharov-Shabat Systems having Potentials with Nonvanishing Boundary Conditions / F. Demontis, C. van der Mee and F. Vitale -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12679 The Novikov-Veselov Equation:Theory and Computation / R. Croke, J. L. Mueller, M. Music, P. Perry, S. Siltanen and A. Stahel -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12718 Transverse instability of plane wave soliton solutions of the Novikov-Veselov equation / Ryan Croke, Jennifer L. Mueller and Andreas Stahel -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12678 Semiclassical soliton ensembles for the focusing nonlinear Schr�odinger equation: Recent developments / Gregory D. Lyng -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12717 Relative-Periodic Elastic Collisions of Water Waves / Jon Wilkening -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12714 The Instabilities of Periodic Traveling Water Waves with Respect to Transverse Perturbations / Katie Oliveras and Bernard Deconinck -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12716 Relationships between the pressure and the free surface independent of the wave-speed / Katie Oliveras and Vishal Vasan -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12715 Comparison of Five Methods of Computing the Dirichlet-Neumann Operator for the Water Wave Problem / Jon Wilkening and Vishal Vasan -- http://www.ams.org/conm/635/ http://dx.doi.org/10.1090/conm/635/12713
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references.

Recurrence in the Korteweg-de Vries equation? / Ben Herbst, Garrett Nieddu and A. David Trubatch -- On the Location of the Discrete Eigenvalues for Defocusing Zakharov-Shabat Systems having Potentials with Nonvanishing Boundary Conditions / F. Demontis, C. van der Mee and F. Vitale -- The Novikov-Veselov Equation:Theory and Computation / R. Croke, J. L. Mueller, M. Music, P. Perry, S. Siltanen and A. Stahel -- Transverse instability of plane wave soliton solutions of the Novikov-Veselov equation / Ryan Croke, Jennifer L. Mueller and Andreas Stahel -- Semiclassical soliton ensembles for the focusing nonlinear Schr�odinger equation: Recent developments / Gregory D. Lyng -- Relative-Periodic Elastic Collisions of Water Waves / Jon Wilkening -- The Instabilities of Periodic Traveling Water Waves with Respect to Transverse Perturbations / Katie Oliveras and Bernard Deconinck -- Relationships between the pressure and the free surface independent of the wave-speed / Katie Oliveras and Vishal Vasan -- Comparison of Five Methods of Computing the Dirichlet-Neumann Operator for the Water Wave Problem / Jon Wilkening and Vishal Vasan --

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12677

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12679

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12718

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12678

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12717

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12714

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12716

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12715

http://www.ams.org/conm/635/

http://dx.doi.org/10.1090/conm/635/12713

Access is restricted to licensed institutions

Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012

Mode of access : World Wide Web

Description based on print version record.

There are no comments for this item.

Log in to your account to post a comment.