Normal view MARC view ISBD view

Rational points, rational curves, and entire holomorphic curves on projective varieties : [electronic resource] CRM short thematic program, June 3-28, 2013, Centre de Recherches Mathematiques, Universite de Montreal, Quebec, Canada / Carlo Gasbarri, Steven Lu, Mike Roth, Yuri Tschinkel, editors.

Contributor(s): Gasbarri, Carlo, 1967- [editor.] | Lu, Steven, 1960- [editor.] | Roth, Mike, 1970- [editor.] | Tschinkel, Yuri [editor.].
Material type: materialTypeLabelBookSeries: Contemporary mathematics, v. 654.Publisher: Providence, Rhode Island : Montreal, Quebec, Canada : American Mathematical Society ; Centre de Recherches Mathematiques, [2015]Description: 1 online resource (pages cm.).Content type: text Media type: unmediated Carrier type: volumeSubject(s): Arithmetical algebraic geometry | Geometry, Algebraic | Rational points (Geometry) | Algebraic varieties | Number theory -- Arithmetic algebraic geometry (Diophantine geometry) -- Arithmetic algebraic geometry (Diophantine geometry) | Algebraic geometry -- Arithmetic problems. Diophantine geometry -- Arithmetic problems. Diophantine geometry | Algebraic geometry -- Arithmetic problems. Diophantine geometry -- Rational points | Number theory -- Probabilistic theory: distribution modulo $1$; metric theory of algorithms -- Diophantine approximation | Algebraic geometry -- Special varieties -- Rationally connected varieties | Dynamical systems and ergodic theory -- Arithmetic and non-Archimedean dynamical systems -- Arithmetic and non-Archimedean dynamical systems | Algebraic geometry -- Arithmetic problems. Diophantine geometry -- Arithmetic varieties and schemes; Arakelov theory; heights | Algebraic geometry -- Special varieties -- None of the above, but in this sectionAdditional physical formats: Rational points, rational curves, and entire holomorphic curves on projective varieties :DDC classification: 516.3/5 Other classification: 11GXX | 14GXX | 14G05 | 11K60 | 14M22 | 37PXX | 14G40 | 14M99 Online resources: Contents | Contents
Contents:
Some applications of $p$-adic uniformization to algebraic dynamics / Ekaterina Amerik -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13213 Special manifolds, arithmetic and hyperbolic aspects: a short survey / Fr�ed�eric Campana -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13214 Invitation to integral and rational points on curves and surfaces / Pranabesh Das and Amos Turchet -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13215 Roth's theorem: an introduction to diophantine approximation / Michael Nakamaye -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13216 The Thue-Siegel method in diophantine geometry / Paul Vojta -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13217 Optimal pinching for the holomorphic sectional curvature of Hitchin's metrics on Hirzebruch surfaces / Angelynn Alvarez, Ananya Chaturvedi and Gordon Heier -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13219 The Lefschetz property for families of curves / J�anos Koll�ar -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13220 Separable rational connectedness and stability / Zhiyu Tian -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13221 Curve classes on rationally connected varieties / Runhong Zong -- http://www.ams.org/conm/654/ http://dx.doi.org/10.1090/conm/654/13222
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Some applications of $p$-adic uniformization to algebraic dynamics / Ekaterina Amerik -- Special manifolds, arithmetic and hyperbolic aspects: a short survey / Fr�ed�eric Campana -- Invitation to integral and rational points on curves and surfaces / Pranabesh Das and Amos Turchet -- Roth's theorem: an introduction to diophantine approximation / Michael Nakamaye -- The Thue-Siegel method in diophantine geometry / Paul Vojta -- Optimal pinching for the holomorphic sectional curvature of Hitchin's metrics on Hirzebruch surfaces / Angelynn Alvarez, Ananya Chaturvedi and Gordon Heier -- The Lefschetz property for families of curves / J�anos Koll�ar -- Separable rational connectedness and stability / Zhiyu Tian -- Curve classes on rationally connected varieties / Runhong Zong --

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13213

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13214

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13215

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13216

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13217

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13219

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13220

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13221

http://www.ams.org/conm/654/

http://dx.doi.org/10.1090/conm/654/13222

Access is restricted to licensed institutions

Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012

Mode of access : World Wide Web

Description based on print version record.

There are no comments for this item.

Log in to your account to post a comment.