Normal view MARC view ISBD view

Energy efficient distributed computing systems / edited by Albert Y. Zomaya, Young Choon Lee.

Contributor(s): Zomaya, Albert Y | Lee, Young-Choon, 1973- | IEEE Xplore (Online Service) [distributor.] | Wiley [publisher.].
Material type: materialTypeLabelBookSeries: Wiley series on parallel and distributed computing: 88Publisher: Hoboken, New Jersey : Wiley, c2012Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2012]Description: 1 PDF (856 pages).Content type: text Media type: electronic Carrier type: online resourceISBN: 9781118342015.Subject(s): Computer networks -- Energy conservation | Electronic data processing -- Distributed processing -- Energy conservation | Green technologyGenre/Form: Electronic books.Additional physical formats: Print version:: No titleDDC classification: 004.36 Online resources: Abstract with links to resource Also available in print.
Contents:
PREFACE xxix -- ACKNOWLEDGMENTS xxxi -- CONTRIBUTORS xxxiii -- 1 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSORCOMPUTERS WITH ENERGY AND TIME CONSTRAINTS 1 / Keqin Li -- 1.1 Introduction 1 -- 1.1.1 Energy Consumption 1 -- 1.1.2 Power Reduction 2 -- 1.1.3 Dynamic Power Management 3 -- 1.1.4 Task Scheduling with Energy and Time Constraints 4 -- 1.1.5 Chapter Outline 5 -- 1.2 Preliminaries 5 -- 1.2.1 Power Consumption Model 5 -- 1.2.2 Problem Definitions 6 -- 1.2.3 Task Models 7 -- 1.2.4 Processor Models 8 -- 1.2.5 Scheduling Models 9 -- 1.2.6 Problem Decomposition 9 -- 1.2.7 Types of Algorithms 10 -- 1.3 Problem Analysis 10 -- 1.3.1 Schedule Length Minimization 10 -- 1.3.1.1 Uniprocessor computers 10 -- 1.3.1.2 Multiprocessor computers 11 -- 1.3.2 Energy Consumption Minimization 12 -- 1.3.2.1 Uniprocessor computers 12 -- 1.3.2.2 Multiprocessor computers 13 -- 1.3.3 Strong NP-Hardness 14 -- 1.3.4 Lower Bounds 14 -- 1.3.5 Energy-Delay Trade-off 15 -- 1.4 Pre-Power-Determination Algorithms 16 -- 1.4.1 Overview 16 -- 1.4.2 Performance Measures 17 -- 1.4.3 Equal-Time Algorithms and Analysis 18 -- 1.4.3.1 Schedule length minimization 18 -- 1.4.3.2 Energy consumption minimization 19 -- 1.4.4 Equal-Energy Algorithms and Analysis 19 -- 1.4.4.1 Schedule length minimization 19 -- 1.4.4.2 Energy consumption minimization 21 -- 1.4.5 Equal-Speed Algorithms and Analysis 22 -- 1.4.5.1 Schedule length minimization 22 -- 1.4.5.2 Energy consumption minimization 23 -- 1.4.6 Numerical Data 24 -- 1.4.7 Simulation Results 25 -- 1.5 Post-Power-Determination Algorithms 28 -- 1.5.1 Overview 28 -- 1.5.2 Analysis of List Scheduling Algorithms 29 -- 1.5.2.1 Analysis of algorithm LS 29 -- 1.5.2.2 Analysis of algorithm LRF 30 -- 1.5.3 Application to Schedule Length Minimization 30 -- 1.5.4 Application to Energy Consumption Minimization 31 -- 1.5.5 Numerical Data 32 -- 1.5.6 Simulation Results 32 -- 1.6 Summary and Further Research 33 -- References 34 -- 2 POWER-AWARE HIGH PERFORMANCE COMPUTING 39 / Rong Ge and Kirk W. Cameron.
2.1 Introduction 39 -- 2.2 Background 41 -- 2.2.1 Current Hardware Technology and Power Consumption 41 -- 2.2.1.1 Processor power 41 -- 2.2.1.2 Memory subsystem power 42 -- 2.2.2 Performance 43 -- 2.2.3 Energy Efficiency 44 -- 2.3 Related Work 45 -- 2.3.1 Power Profiling 45 -- 2.3.1.1 Simulator-based power estimation 45 -- 2.3.1.2 Direct measurements 46 -- 2.3.1.3 Event-based estimation 46 -- 2.3.2 Performance Scalability on Power-Aware Systems 46 -- 2.3.3 Adaptive Power Allocation for Energy-Efficient Computing47 -- 2.4 PowerPack: Fine-Grain Energy Profiling of HPC Applications48 -- 2.4.1 Design and Implementation of PowerPack 48 -- 2.4.1.1 Overview 48 -- 2.4.1.2 Fine-grain systematic power measurement 50 -- 2.4.1.3 Automatic power profiling and code synchronization51 -- 2.4.2 Power Profiles of HPC Applications and Systems 53 -- 2.4.2.1 Power distribution over components 53 -- 2.4.2.2 Power dynamics of applications 54 -- 2.4.2.3 Power bounds on HPC systems 55 -- 2.4.2.4 Power versus dynamic voltage and frequency scaling57 -- 2.5 Power-Aware Speedup Model 59 -- 2.5.1 Power-Aware Speedup 59 -- 2.5.1.1 Sequential execution time for a single workload T1(w, f) 60 -- 2.5.1.2 Sequential execution time for an ON-chip/OFF-chipworkload 60 -- 2.5.1.3 Parallel execution time on N processors for anON-/OFF-chip workload with DOP = i 61 -- 2.5.1.4 Power-aware speedup for DOP and ON-/OFF-chip workloads62 -- 2.5.2 Model Parametrization and Validation 63 -- 2.5.2.1 Coarse-grain parametrization and validation 64 -- 2.5.2.2 Fine-grain parametrization and validation 66 -- 2.6 Model Usages 69 -- 2.6.1 Identification of Optimal System Configurations 70 -- 2.6.2 PAS-Directed Energy-Driven Runtime Frequency Scaling71 -- 2.7 Conclusion 73 -- References 75 -- 3 ENERGY EFFICIENCY IN HPC SYSTEMS 81 / Ivan Rodero and Manish Parashar -- 3.1 Introduction 81 -- 3.2 Background and Related Work 83 -- 3.2.1 CPU Power Management 83 -- 3.2.1.1 OS-level CPU power management 83 -- 3.2.1.2 Workload-level CPU power management 84.
3.2.1.3 Cluster-level CPU power management 84 -- 3.2.2 Component-Based Power Management 85 -- 3.2.2.1 Memory subsystem 85 -- 3.2.2.2 Storage subsystem 86 -- 3.2.3 Thermal-Conscious Power Management 87 -- 3.2.4 Power Management in Virtualized Datacenters 87 -- 3.3 Proactive, Component-Based Power Management 88 -- 3.3.1 Job Allocation Policies 88 -- 3.3.2 Workload Profiling 90 -- 3.4 Quantifying Energy Saving Possibilities 91 -- 3.4.1 Methodology 92 -- 3.4.2 Component-Level Power Requirements 92 -- 3.4.3 Energy Savings 94 -- 3.5 Evaluation of the Proposed Strategies 95 -- 3.5.1 Methodology 96 -- 3.5.2 Workloads 96 -- 3.5.3 Metrics 97 -- 3.6 Results 97 -- 3.7 Concluding Remarks 102 -- 3.8 Summary 103 -- References 104 -- 4 A STOCHASTIC FRAMEWORK FOR HIERARCHICAL SYSTEM-LEVEL POWERMANAGEMENT 109 / Peng Rong and Massoud Pedram -- 4.1 Introduction 109 -- 4.2 Related Work 111 -- 4.3 A Hierarchical DPM Architecture 113 -- 4.4 Modeling 114 -- 4.4.1 Model of the Application Pool 114 -- 4.4.2 Model of the Service Flow Control 118 -- 4.4.3 Model of the Simulated Service Provider 119 -- 4.4.4 Modeling Dependencies between SPs 120 -- 4.5 Policy Optimization 122 -- 4.5.1 Mathematical Formulation 122 -- 4.5.2 Optimal Time-Out Policy for Local Power Manager 123 -- 4.6 Experimental Results 125 -- 4.7 Conclusion 130 -- References 130 -- 5 ENERGY-EFFICIENT RESERVATION INFRASTRUCTURE FOR GRIDS,CLOUDS, AND NETWORKS 133 / Anne-Ce' cile Orgerie and Laurent Lefe` vre -- 5.1 Introduction 133 -- 5.2 Related Works 134 -- 5.2.1 Server and Data Center Power Management 135 -- 5.2.2 Node Optimizations 135 -- 5.2.3 Virtualization to Improve Energy Efficiency 136 -- 5.2.4 Energy Awareness in Wired Networking Equipment 136 -- 5.2.5 Synthesis 137 -- 5.3 ERIDIS: Energy-Efficient Reservation Infrastructure forLarge-Scale Distributed Systems 138 -- 5.3.1 ERIDIS Architecture 138 -- 5.3.2 Management of the Resource Reservations 141 -- 5.3.3 Resource Management and On/Off Algorithms 145 -- 5.3.4 Energy-Consumption Estimates 146.
5.3.5 Prediction Algorithms 146 -- 5.4 EARI: Energy-Aware Reservation Infrastructure for DataCenters and Grids 147 -- 5.4.1 EARI's Architecture 147 -- 5.4.2 Validation of EARI on Experimental Grid Traces 147 -- 5.5 GOC: Green Open Cloud 149 -- 5.5.1 GOC's Resource Manager Architecture 150 -- 5.5.2 Validation of the GOC Framework 152 -- 5.6 HERMES: High Level Energy-Aware Model for BandwidthReservation in End-To-End Networks 152 -- 5.6.1 HERMES' Architecture 154 -- 5.6.2 The Reservation Process of HERMES 155 -- 5.6.3 Discussion 157 -- 5.7 Summary 158 -- References 158 -- 6 ENERGY-EFFICIENT JOB PLACEMENT ON CLUSTERS, GRIDS, ANDCLOUDS 163 / Damien Borgetto, Henri Casanova, Georges Da Costa, andJean-Marc Pierson -- 6.1 Problem and Motivation 163 -- 6.1.1 Context 163 -- 6.1.2 Chapter Roadmap 164 -- 6.2 Energy-Aware Infrastructures 164 -- 6.2.1 Buildings 165 -- 6.2.2 Context-Aware Buildings 165 -- 6.2.3 Cooling 166 -- 6.3 Current Resource Management Practices 167 -- 6.3.1 Widely Used Resource Management Systems 167 -- 6.3.2 Job Requirement Description 169 -- 6.4 Scientific and Technical Challenges 170 -- 6.4.1 Theoretical Difficulties 170 -- 6.4.2 Technical Difficulties 170 -- 6.4.3 Controlling and Tuning Jobs 171 -- 6.5 Energy-Aware Job Placement Algorithms 172 -- 6.5.1 State of the Art 172 -- 6.5.2 Detailing One Approach 174 -- 6.6 Discussion 180 -- 6.6.1 Open Issues and Opportunities 180 -- 6.6.2 Obstacles for Adoption in Production 182 -- 6.7 Conclusion 183 -- References 184 -- 7 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENTSCHEDULING ALGORITHMS FOR COMPUTATIONAL GRIDS 189 / Peder Lindberg, James Leingang, Daniel Lysaker, KashifBilal, Samee Ullah Khan, Pascal Bouvry, Nasir Ghani, NasroMin-Allah, and Juan Li -- 7.1 Introduction 189 -- 7.2 Problem Formulation 191 -- 7.2.1 The System Model 191 -- 7.2.1.1 PEs 191 -- 7.2.1.2 DVS 191 -- 7.2.1.3 Tasks 192 -- 7.2.1.4 Preliminaries 192 -- 7.2.2 Formulating the Energy-Makespan Minimization Problem192 -- 7.3 Proposed Algorithms 193.
7.3.1 Greedy Heuristics 194 -- 7.3.1.1 Greedy heuristic scheduling algorithm 196 -- 7.3.1.2 Greedy-min 197 -- 7.3.1.3 Greedy-deadline 198 -- 7.3.1.4 Greedy-max 198 -- 7.3.1.5 MaxMin 199 -- 7.3.1.6 ObFun 199 -- 7.3.1.7 MinMin StdDev 202 -- 7.3.1.8 MinMax StdDev 202 -- 7.4 Simulations, Results, and Discussion 203 -- 7.4.1 Workload 203 -- 7.4.2 Comparative Results 204 -- 7.4.2.1 Small-size problems 204 -- 7.4.2.2 Large-size problems 206 -- 7.5 Related Works 211 -- 7.6 Conclusion 211 -- References 212 -- 8 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING215 / Josep LL. Berral, In igo Goiri, Ramon Nou, FerranJulia` , Josep O. Fito' , Jordi Guitart, Ricard Gavalda', and Jordi Torres -- 8.1 Introduction 215 -- 8.1.1 Energetic Impact of the Cloud 216 -- 8.1.2 An Intelligent Way to Manage Data Centers 216 -- 8.1.3 Current Autonomic Computing Techniques 217 -- 8.1.4 Power-Aware Autonomic Computing 217 -- 8.1.5 State of the Art and Case Study 218 -- 8.2 Intelligent Self-Management 218 -- 8.2.1 Classical AI Approaches 219 -- 8.2.1.1 Heuristic algorithms 219 -- 8.2.1.2 AI planning 219 -- 8.2.1.3 Semantic techniques 219 -- 8.2.1.4 Expert systems and genetic algorithms 220 -- 8.2.2 Machine Learning Approaches 220 -- 8.2.2.1 Instance-based learning 221 -- 8.2.2.2 Reinforcement learning 222 -- 8.2.2.3 Feature and example selection 225 -- 8.3 Introducing Power-Aware Approaches 225 -- 8.3.1 Use of Virtualization 226 -- 8.3.2 Turning On and Off Machines 228 -- 8.3.3 Dynamic Voltage and Frequency Scaling 229 -- 8.3.4 Hybrid Nodes and Data Centers 230 -- 8.4 Experiences of Applying ML on Power-Aware Self-Management230 -- 8.4.1 Case Study Approach 231 -- 8.4.2 Scheduling and Power Trade-Off 231 -- 8.4.3 Experimenting with Power-Aware Techniques 233 -- 8.4.4 Applying Machine Learning 236 -- 8.4.5 Conclusions from the Experiments 238 -- 8.5 Conclusions on Intelligent Power-Aware Self-Management238 -- References 240 -- 9 ENERGY EFFICIENCY METRICS FOR DATA CENTERS 245 / Javid Taheri and Albert Y. Zomaya.
9.1 Introduction 245 -- 9.1.1 Background 245 -- 9.1.2 Data Center Energy Use 246 -- 9.1.3 Data Center Characteristics 246 -- 9.1.3.1 Electric power 247 -- 9.1.3.2 Heat removal 249 -- 9.1.4 Energy Efficiency 250 -- 9.2 Fundamentals of Metrics 250 -- 9.2.1 Demand and Constraints on Data Center Operators 250 -- 9.2.2 Metrics 251 -- 9.2.2.1 Criteria for good metrics 251 -- 9.2.2.2 Methodology 252 -- 9.2.2.3 Stability of metrics 252 -- 9.3 Data Center Energy Efficiency 252 -- 9.3.1 Holistic IT Efficiency Metrics 252 -- 9.3.1.1 Fixed versus proportional overheads 254 -- 9.3.1.2 Power versus energy 254 -- 9.3.1.3 Performance versus productivity 255 -- 9.3.2 Code of Conduct 256 -- 9.3.2.1 Environmental statement 256 -- 9.3.2.2 Problem statement 256 -- 9.3.2.3 Scope of the CoC 257 -- 9.3.2.4 Aims and objectives of CoC 258 -- 9.3.3 Power Use in Data Centers 259 -- 9.3.3.1 Data center IT power to utility power relationship259 -- 9.3.3.2 Chiller efficiency and external temperature 260 -- 9.4 Available Metrics 260 -- 9.4.1 The Green Grid 261 -- 9.4.1.1 Power usage effectiveness (PUE) 261 -- 9.4.1.2 Data center efficiency (DCE) 262 -- 9.4.1.3 Data center infrastructure efficiency (DCiE) 262 -- 9.4.1.4 Data center productivity (DCP) 263 -- 9.4.2 McKinsey 263 -- 9.4.3 Uptime Institute 264 -- 9.4.3.1 Site infrastructure power overhead multiplier (SI-POM)265 -- 9.4.3.2 IT hardware power overhead multiplier (H-POM) 266 -- 9.4.3.3 DC hardware compute load per unit of computing work done266 -- 9.4.3.4 Deployed hardware utilization ratio (DH-UR) 266 -- 9.4.3.5 Deployed hardware utilization efficiency (DH-UE) 267 -- 9.5 Harmonizing Global Metrics for Data Center Energy Efficiency267 -- References 268 -- 10 AUTONOMIC GREEN COMPUTING IN LARGE-SCALE DATA CENTERS271 / Haoting Luo, Bithika Khargharia, Salim Hariri, and YoussifAl-Nashif / -- 10.1 Introduction 271 -- 10.2 Related Technologies and Techniques 272 -- 10.2.1 Power Optimization Techniques in Data Centers 272 -- 10.2.2 Design Model 273.
10.2.3 Networks 274 -- 10.2.4 Data Center Power Distribution 275 -- 10.2.5 Data Center Power-Efficient Metrics 276 -- 10.2.6 Modeling Prototype and Testbed 277 -- 10.2.7 Green Computing 278 -- 10.2.8 Energy Proportional Computing 280 -- 10.2.9 Hardware Virtualization Technology 281 -- 10.2.10 Autonomic Computing 282 -- 10.3 Autonomic Green Computing: A Case Study 283 -- 10.3.1 Autonomic Management Platform 285 -- 10.3.1.1 Platform architecture 285 -- 10.3.1.2 DEVS-based modeling and simulation platform 285 -- 10.3.1.3 Workload generator 287 -- 10.3.2 Model Parameter Evaluation 288 -- 10.3.2.1 State transitioning overhead 288 -- 10.3.2.2 VM template evaluation 289 -- 10.3.2.3 Scalability analysis 291 -- 10.3.3 Autonomic Power Efficiency Management Algorithm(Performance Per Watt) 291 -- 10.3.4 Simulation Results and Evaluation 293 -- 10.3.4.1 Analysis of energy and performance trade-offs 296 -- 10.4 Conclusion and Future Directions 297 -- References 298 -- 11 ENERGY AND THERMAL AWARE SCHEDULING IN DATA CENTERS301 / Gaurav Dhiman, Raid Ayoub, and Tajana S. Rosing -- 11.1 Introduction 301 -- 11.2 Related Work 302 -- 11.3 Intermachine Scheduling 305 -- 11.3.1 Performance and Power Profile of VMs 305 -- 11.3.2 Architecture 309 -- 11.3.2.1 vgnode 309 -- 11.3.2.2 vgxen 310 -- 11.3.2.3 vgdom 312 -- 11.3.2.4 vgserv 312 -- 11.4 Intramachine Scheduling 315 -- 11.4.1 Air-Forced Thermal Modeling and Cost 316 -- 11.4.2 Cooling Aware Dynamic Workload Scheduling 317 -- 11.4.3 Scheduling Mechanism 318 -- 11.4.4 Cooling Costs Predictor 319 -- 11.5 Evaluation 321 -- 11.5.1 Intermachine Scheduler (vGreen) 321 -- 11.5.2 Heterogeneous Workloads 323 -- 11.5.2.1 Comparison with DVFS policies 325 -- 11.5.2.2 Homogeneous workloads 328 -- 11.5.3 Intramachine Scheduler (Cool and Save) 328 -- 11.5.3.1 Results 331 -- 11.5.3.2 Overhead of CAS 333 -- 11.6 Conclusion 333 -- References 334 -- 12 QOS-AWARE POWER MANAGEMENT IN DATA CENTERS 339 / Jiayu Gong and Cheng-Zhong Xu -- 12.1 Introduction 339.
12.2 Problem Classification 340 -- 12.2.1 Objective and Constraint 340 -- 12.2.2 Scope and Time Granularities 340 -- 12.2.3 Methodology 341 -- 12.2.4 Power Management Mechanism 342 -- 12.3 Energy Efficiency 344 -- 12.3.1 Energy-Efficiency Metrics 344 -- 12.3.2 Improving Energy Efficiency 346 -- 12.3.2.1 Energy minimization with performance guarantee 346 -- 12.3.2.2 Performance maximization under power budget 348 -- 12.3.2.3 Trade-off between power and performance 348 -- 12.3.3 Energy-Proportional Computing 350 -- 12.4 Power Capping 351 -- 12.5 Conclusion 353 -- References 356 -- 13 ENERGY-EFFICIENT STORAGE SYSTEMS FOR DATA CENTERS361 / Sudhanva Gurumurthi and Anand Sivasubramaniam -- 13.1 Introduction 361 -- 13.2 Disk Drive Operation and Disk Power 362 -- 13.2.1 An Overview of Disk Drives 362 -- 13.2.2 Sources of Disk Power Consumption 363 -- 13.2.3 Disk Activity and Power Consumption 365 -- 13.3 Disk and Storage Power Reduction Techniques 366 -- 13.3.1 Exploiting the STANDBY State 368 -- 13.3.2 Reducing Seek Activity 369 -- 13.3.3 Achieving Energy Proportionality 369 -- 13.3.3.1 Hardware approaches 369 -- 13.3.3.2 Software approaches 370 -- 13.4 Using Nonvolatile Memory and Solid-State Disks 371 -- 13.5 Conclusions 372 -- References 373 -- 14 AUTONOMIC ENERGY/PERFORMANCE OPTIMIZATIONS FOR MEMORY INSERVERS 377 / Bithika Khargharia and Mazin Yousif -- 14.1 Introduction 378 -- 14.2 Classifications of Dynamic Power Management Techniques380 -- 14.2.1 Heuristic and Predictive Techniques 380 -- 14.2.2 QoS and Energy Trade-Offs 381 -- 14.3 Applications of Dynamic Power Management (DPM) 382 -- 14.3.1 Power Management of System Components in Isolation382 -- 14.3.2 Joint Power Management of System Components 383 -- 14.3.3 Holistic System-Level Power Management 383 -- 14.4 Autonomic Power and Performance Optimization of MemorySubsystems in Server Platforms 384 -- 14.4.1 Adaptive Memory Interleaving Technique for Power andPerformance Management 384 -- 14.4.1.1 Formulating the optimization problem 386.
14.4.1.2 Memory appflow 389 -- 14.4.2 Industry Techniques 389 -- 14.4.2.1 Enhancements in memory hardware design 390 -- 14.4.2.2 Adding more operating states 390 -- 14.4.2.3 Faster transition to and from low power states 390 -- 14.4.2.4 Memory consolidation 390 -- 14.5 Conclusion 391 -- References 391 -- 15 ROD: A PRACTICAL APPROACH TO IMPROVING RELIABILITY OFENERGY-EFFICIENT PARALLEL DISK SYSTEMS 395 / Shu Yin, Xiaojun Ruan, Adam Manzanares, and XiaoQin -- 15.1 Introduction 395 -- 15.2 Modeling Reliability of Energy-Efficient Parallel Disks396 -- 15.2.1 The MINT Model 396 -- 15.2.1.1 Disk utilization 398 -- 15.2.1.2 Temperature 398 -- 15.2.1.3 Power-state transition frequency 399 -- 15.2.1.4 Single disk reliability model 399 -- 15.2.2 MAID, Massive Arrays of Idle Disks 400 -- 15.3 Improving Reliability of MAID via Disk Swapping 401 -- 15.3.1 Improving Reliability of Cache Disks in MAID 401 -- 15.3.2 Swapping Disks Multiple Times 404 -- 15.4 Experimental Results and Evaluation 405 -- 15.4.1 Experimental Setup 405 -- 15.4.2 Disk Utilization 406 -- 15.4.3 The Single Disk Swapping Strategy 406 -- 15.4.4 The Multiple Disk Swapping Strategy 409 -- 15.5 Related Work 411 -- 15.6 Conclusions 412 -- References 413 -- 16 EMBRACING THE MEMORY AND I/O WALLS FOR ENERGY-EFFICIENTSCIENTIFIC COMPUTING 417 / Chung-Hsing Hsu and Wu-Chun Feng -- 16.1 Introduction 417 -- 16.2 Background and Related Work 420 -- 16.2.1 DVFS-Enabled Processors 420 -- 16.2.2 DVFS Scheduling Algorithms 421 -- 16.2.3 Memory-Aware, Interval-Based Algorithms 422 -- 16.3 (Sb(B-Adaptation: A New DVFS Algorithm 423 -- 16.3.1 The Compute-Boundedness Metric, (Sb(B 423 -- 16.3.2 The Frequency Calculating Formula, f ∗ 424 -- 16.3.3 The Online (Sb(B Estimation 425 -- 16.3.4 Putting It All Together 427 -- 16.4 Algorithm Effectiveness 429 -- 16.4.1 A Comparison to Other DVFS Algorithms 429 -- 16.4.2 Frequency Emulation 432 -- 16.4.3 The Minimum Dependence to the PMU 436 -- 16.5 Conclusions and Future Work 438 -- References 439.
17 MULTIPLE FREQUENCY SELECTION IN DVFS-ENABLED PROCESSORS TOMINIMIZE ENERGY CONSUMPTION 443 / Nikzad Babaii Rizvandi, Albert Y. Zomaya, Young Choon Lee,Ali Javadzadeh Boloori, and Javid Taheri -- 17.1 Introduction 443 -- 17.2 Energy Efficiency in HPC Systems 444 -- 17.3 Exploitation of Dynamic Voltage-Frequency Scaling446 -- 17.3.1 Independent Slack Reclamation 446 -- 17.3.2 Integrated Schedule Generation 447 -- 17.4 Preliminaries 448 -- 17.4.1 System and Application Models 448 -- 17.4.2 Energy Model 448 -- 17.5 Energy-Aware Scheduling via DVFS 450 -- 17.5.1 Optimum Continuous Frequency 450 -- 17.5.2 Reference Dynamic Voltage-Frequency Scaling (RDVFS)451 -- 17.5.3 Maximum-Minimum-Frequency for DynamicVoltage-Frequency Scaling (MMF-DVFS) 452 -- 17.5.4 Multiple Frequency Selection for DynamicVoltage-Frequency Scaling (MFS-DVFS) 453 -- 17.5.4.1 Task eligibility 454 -- 17.6 Experimental Results 456 -- 17.6.1 Simulation Settings 456 -- 17.6.2 Results 458 -- 17.7 Conclusion 461 -- References 461 -- 18 THE PARAMOUNTCY OF RECONFIGURABLE COMPUTING 465 / Reiner Hartenstein -- 18.1 Introduction 465 -- 18.2 Why Computers are Important 466 -- 18.2.1 Computing for a Sustainable Environment 470 -- 18.3 Performance Progress Stalled 472 -- 18.3.1 Unaffordable Energy Consumption of Computing 473 -- 18.3.2 Crashing into the Programming Wall 475 -- 18.4 The Tail is Wagging the Dog (Accelerators) 488 -- 18.4.1 Hardwired Accelerators 489 -- 18.4.2 Programmable Accelerators 490 -- 18.5 Reconfigurable Computing 494 -- 18.5.1 Speedup Factors by FPGAs 498 -- 18.5.2 The Reconfigurable Computing Paradox 501 -- 18.5.3 Saving Energy by Reconfigurable Computing 505 -- 18.5.3.1 Traditional green computing 506 -- 18.5.3.2 The role of graphics processors 507 -- 18.5.3.3 Wintel versus ARM 508 -- 18.5.4 Reconfigurable Computing is the Silver Bullet 511 -- 18.5.4.1 A new world model of computing 511 -- 18.5.5 The Twin-Paradigm Approach to Tear Down the Wall 514 -- 18.5.6 A Mass Movement Needed as Soon as Possible 517.
18.5.6.1 Legacy software from the mainframe age 518 -- 18.5.7 How to Reinvent Computing 519 18.6 Conclusions 526 -- References 529 -- 19 WORKLOAD CLUSTERING FOR INCREASING ENERGY SAVINGS ONEMBEDDED MPSOCS 549 / Ozcan Ozturk, Mahmut Kandemir, and Sri Hari KrishnaNarayanan -- 19.1 Introduction 549 -- 19.2 Embedded MPSoC Architecture, Execution Model, and RelatedWork 550 -- 19.3 Our Approach 551 -- 19.3.1 Overview 551 -- 19.3.2 Technical Details and Problem Formulation 553 -- 19.3.2.1 System and job model 553 -- 19.3.2.2 Mathematical programing model 554 -- 19.3.2.3 Example 557 -- 19.4 Experimental Evaluation 560 -- 19.5 Conclusions 564 -- References 565 -- 20 ENERGY-EFFICIENT INTERNET INFRASTRUCTURE 567 / Weirong Jiang and Viktor K. Prasanna -- 20.1 Introduction 567 -- 20.1.1 Performance Challenges 568 -- 20.1.2 Existing Packet Forwarding Approaches 570 -- 20.1.2.1 Software approaches 570 -- 20.1.2.2 Hardware approaches 571 -- 20.2 SRAM-Based Pipelined IP Lookup Architectures: Alternativeto TCAMs 571 -- 20.3 Data Structure Optimization for Power Efficiency 573 -- 20.3.1 Problem Formulation 574 -- 20.3.1.1 Non-pipelined and pipelined engines 574 -- 20.3.1.2 Power function of SRAM 575 -- 20.3.2 Special Case: Uniform Stride 576 -- 20.3.3 Dynamic Programming 576 -- 20.3.4 Performance Evaluation 577 -- 20.3.4.1 Results for non-pipelined architecture 578 -- 20.3.4.2 Results for pipelined architecture 578 -- 20.4 Architectural Optimization to Reduce Dynamic PowerDissipation 580 -- 20.4.1 Analysis and Motivation 581 -- 20.4.1.1 Traffic locality 582 -- 20.4.1.2 Traffic rate variation 582 -- 20.4.1.3 Access frequency on different stages 583 -- 20.4.2 Architecture-Specific Techniques 583 -- 20.4.2.1 Inherent caching 584 -- 20.4.2.2 Local clocking 584 -- 20.4.2.3 Fine-grained memory enabling 585 -- 20.4.3 Performance Evaluation 585 -- 20.5 Related Work 588 -- 20.6 Summary 589 -- References 589 -- 21 DEMAND RESPONSE IN THE SMART GRID: A DISTRIBUTED COMPUTINGPERSPECTIVE 593 / Chen Wang and Martin De Groot.
21.1 Introduction 593 -- 21.2 Demand Response 595 -- 21.2.1 Existing Demand Response Programs 595 -- 21.2.2 Demand Response Supported by the Smart Grid 597 -- 21.3 Demand Response as a Distributed System 600 -- 21.3.1 An Overlay Network for Demand Response 600 -- 21.3.2 Event Driven Demand Response 602 -- 21.3.3 Cost Driven Demand Response 604 -- 21.3.4 A Decentralized Demand Response Framework 609 -- 21.3.5 Accountability of Coordination Decision Making 610 -- 21.4 Summary 611 -- References 611 -- 22 RESOURCE MANAGEMENT FOR DISTRIBUTED MOBILE COMPUTING615 / Jong-Kook Kim -- 22.1 Introduction 615 -- 22.2 Single-Hop Energy-Constrained Environment 617 -- 22.2.1 System Model 617 -- 22.2.2 Related Work 620 -- 22.2.3 Heuristic Descriptions 621 -- 22.2.3.1 Mapping event 621 -- 22.2.3.2 Scheduling communications 621 -- 22.2.3.3 Opportunistic load balancing and minimum energy greedyheuristics 622 -- 22.2.3.4 ME-MC heuristic 622 -- 22.2.3.5 ME-ME heuristic 624 -- 22.2.3.6 CRME heuristic 625 -- 22.2.3.7 Originator and random 626 -- 22.2.3.8 Upper bound 626 -- 22.2.4 Simulation Model 628 -- 22.2.5 Results 630 -- 22.2.6 Summary 634 -- 22.3 Multihop Distributed Mobile Computing Environment 635 -- 22.3.1 The Multihop System Model 635 -- 22.3.2 Energy-Aware Routing Protocol 636 -- 22.3.2.1 Overview 636 -- 22.3.2.2 DSDV 637 -- 22.3.2.3 DSDV remaining energy 637 -- 22.3.2.4 DSDV-energy consumption per remaining energy 637 -- 22.3.3 Heuristic Description 638 -- 22.3.3.1 Random 638 -- 22.3.3.2 Estimated minimum total energy (EMTE) 638 -- 22.3.3.3 K-percent-speed (KPS) and K-percent-energy (KPE)639 -- 22.3.3.4 Energy ratio and distance (ERD) 639 -- 22.3.3.5 ETC and distance (ETCD) 640 -- 22.3.3.6 Minimum execution time (MET) 640 -- 22.3.3.7 Minimum completion time (MCT) and minimum completiontime with DVS (MCT-DVS) 640 -- 22.3.3.8 Switching algorithm (SA) 640 -- 22.3.4 Simulation Model 641 -- 22.3.5 Results 643 -- 22.3.5.1 Distributed resource management 643 -- 22.3.5.2 Energy-aware protocol 644.
22.3.6 Summary 644 -- 22.4 Future Work 647 -- References 647 -- 23 AN ENERGY-AWARE FRAMEWORK FOR MOBILE DATA MINING 653 / Carmela Comito, Domenico Talia, and Paolo Trunfio -- 23.1 Introduction 653 -- 23.2 System Architecture 654 -- 23.3 Mobile Device Components 657 -- 23.4 Energy Model 659 -- 23.5 Clustering Scheme 664 -- 23.5.1 Clustering the M2M Architecture 666 -- 23.6 Conclusion 670 -- References 670 -- 24 ENERGY AWARENESS AND EFFICIENCY IN WIRELESS SENSORNETWORKS: FROM PHYSICAL DEVICES TO THE COMMUNICATION LINK 673 / Fla' via C. Delicato and Paulo F. Pires -- 24.1 Introduction 673 -- 24.2 WSN and Power Dissipation Models 676 -- 24.2.1 Network and Node Architecture 676 -- 24.2.2 Sources of Power Dissipation in WSNs 679 -- 24.3 Strategies for Energy Optimization 683 -- 24.3.1 Intranode Level 684 -- 24.3.1.1 Duty cycling 685 -- 24.3.1.2 Adaptive sensing 691 -- 24.3.1.3 Dynamic voltage scale (DVS) 693 -- 24.3.1.4 OS task scheduling 694 -- 24.3.2 Internode Level 695 -- 24.3.2.1 Transmission power control 695 -- 24.3.2.2 Dynamic modulation scaling 696 -- 24.3.2.3 Link layer optimizations 698 -- 24.4 Final Remarks 701 -- References 702 -- 25 NETWORK-WIDE STRATEGIES FOR ENERGY EFFICIENCY IN WIRELESSSENSOR NETWORKS 709 / Fla' via C. Delicato and Paulo F. Pires -- 25.1 Introduction 709 -- 25.2 Data Link Layer 711 -- 25.2.1 Topology Control Protocols 712 -- 25.2.2 Energy-Efficient MAC Protocols 714 -- 25.2.2.1 Scheduled MAC protocols in WSNs 716 -- 25.2.2.2 Contention-based MAC protocols 717 -- 25.3 Network Layer 719 -- 25.3.1 Flat and Hierarchical Protocols 722 -- 25.4 Transport Layer 725 -- 25.5 Application Layer 729 -- 25.5.1 Task Scheduling 729 -- 25.5.2 Data Aggregation and Data Fusion in WSNs 733 -- 25.5.2.1 Approaches of data fusion for energy efficiency 735 -- 25.5.2.2 Data aggregation strategies 736 -- 25.6 Final Remarks 740 -- References 741 -- 26 ENERGY MANAGEMENT IN HETEROGENEOUS WIRELESS HEALTH CARENETWORKS 751 / Nima Nikzad, Priti Aghera, Piero Zappi, and Tajana S.Rosing.
26.1 Introduction 751 -- 26.2 System Model 753 -- 26.2.1 Health Monitoring Task Model 753 -- 26.3 Collaborative Distributed Environmental Sensing 755 -- 26.3.1 Node Neighborhood and Localization Rate 757 -- 26.3.2 Energy Ratio and Sensing Rate 758 -- 26.3.3 Duty Cycling and Prediction 759 -- 26.4 Task Assignment in a Body Area Network 760 -- 26.4.1 Optimal Task Assignment 760 -- 26.4.2 Dynamic Task Assignment 762 -- 26.4.2.1 DynAGreen algorithm 763 -- 26.4.2.2 DynAGreenLife algorithm 768 -- 26.5 Results 771 -- 26.5.1 Collaborative Sensing 771 -- 26.5.1.1 Results 772 -- 26.5.2 Dynamic Task Assignment 776 -- 26.5.2.1 Performance in static conditions 777 -- 26.5.2.2 Dynamic adaptability 780 -- 26.6 Conclusion 784 -- References 785 -- INDEX 787.
Summary: "The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005. From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems. These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems. This book brings together a group of outstanding researchers that investigate the different facets of green and energy efficient distributed computing.Key features: One of the first books of its kind Features latest research findings on emerging topics by well-known scientists Valuable research for grad students, postdocs, and researchers Research will greatly feed into other technologies and application domains"-- Provided by publisher.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

PREFACE xxix -- ACKNOWLEDGMENTS xxxi -- CONTRIBUTORS xxxiii -- 1 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSORCOMPUTERS WITH ENERGY AND TIME CONSTRAINTS 1 / Keqin Li -- 1.1 Introduction 1 -- 1.1.1 Energy Consumption 1 -- 1.1.2 Power Reduction 2 -- 1.1.3 Dynamic Power Management 3 -- 1.1.4 Task Scheduling with Energy and Time Constraints 4 -- 1.1.5 Chapter Outline 5 -- 1.2 Preliminaries 5 -- 1.2.1 Power Consumption Model 5 -- 1.2.2 Problem Definitions 6 -- 1.2.3 Task Models 7 -- 1.2.4 Processor Models 8 -- 1.2.5 Scheduling Models 9 -- 1.2.6 Problem Decomposition 9 -- 1.2.7 Types of Algorithms 10 -- 1.3 Problem Analysis 10 -- 1.3.1 Schedule Length Minimization 10 -- 1.3.1.1 Uniprocessor computers 10 -- 1.3.1.2 Multiprocessor computers 11 -- 1.3.2 Energy Consumption Minimization 12 -- 1.3.2.1 Uniprocessor computers 12 -- 1.3.2.2 Multiprocessor computers 13 -- 1.3.3 Strong NP-Hardness 14 -- 1.3.4 Lower Bounds 14 -- 1.3.5 Energy-Delay Trade-off 15 -- 1.4 Pre-Power-Determination Algorithms 16 -- 1.4.1 Overview 16 -- 1.4.2 Performance Measures 17 -- 1.4.3 Equal-Time Algorithms and Analysis 18 -- 1.4.3.1 Schedule length minimization 18 -- 1.4.3.2 Energy consumption minimization 19 -- 1.4.4 Equal-Energy Algorithms and Analysis 19 -- 1.4.4.1 Schedule length minimization 19 -- 1.4.4.2 Energy consumption minimization 21 -- 1.4.5 Equal-Speed Algorithms and Analysis 22 -- 1.4.5.1 Schedule length minimization 22 -- 1.4.5.2 Energy consumption minimization 23 -- 1.4.6 Numerical Data 24 -- 1.4.7 Simulation Results 25 -- 1.5 Post-Power-Determination Algorithms 28 -- 1.5.1 Overview 28 -- 1.5.2 Analysis of List Scheduling Algorithms 29 -- 1.5.2.1 Analysis of algorithm LS 29 -- 1.5.2.2 Analysis of algorithm LRF 30 -- 1.5.3 Application to Schedule Length Minimization 30 -- 1.5.4 Application to Energy Consumption Minimization 31 -- 1.5.5 Numerical Data 32 -- 1.5.6 Simulation Results 32 -- 1.6 Summary and Further Research 33 -- References 34 -- 2 POWER-AWARE HIGH PERFORMANCE COMPUTING 39 / Rong Ge and Kirk W. Cameron.

2.1 Introduction 39 -- 2.2 Background 41 -- 2.2.1 Current Hardware Technology and Power Consumption 41 -- 2.2.1.1 Processor power 41 -- 2.2.1.2 Memory subsystem power 42 -- 2.2.2 Performance 43 -- 2.2.3 Energy Efficiency 44 -- 2.3 Related Work 45 -- 2.3.1 Power Profiling 45 -- 2.3.1.1 Simulator-based power estimation 45 -- 2.3.1.2 Direct measurements 46 -- 2.3.1.3 Event-based estimation 46 -- 2.3.2 Performance Scalability on Power-Aware Systems 46 -- 2.3.3 Adaptive Power Allocation for Energy-Efficient Computing47 -- 2.4 PowerPack: Fine-Grain Energy Profiling of HPC Applications48 -- 2.4.1 Design and Implementation of PowerPack 48 -- 2.4.1.1 Overview 48 -- 2.4.1.2 Fine-grain systematic power measurement 50 -- 2.4.1.3 Automatic power profiling and code synchronization51 -- 2.4.2 Power Profiles of HPC Applications and Systems 53 -- 2.4.2.1 Power distribution over components 53 -- 2.4.2.2 Power dynamics of applications 54 -- 2.4.2.3 Power bounds on HPC systems 55 -- 2.4.2.4 Power versus dynamic voltage and frequency scaling57 -- 2.5 Power-Aware Speedup Model 59 -- 2.5.1 Power-Aware Speedup 59 -- 2.5.1.1 Sequential execution time for a single workload T1(w, f) 60 -- 2.5.1.2 Sequential execution time for an ON-chip/OFF-chipworkload 60 -- 2.5.1.3 Parallel execution time on N processors for anON-/OFF-chip workload with DOP = i 61 -- 2.5.1.4 Power-aware speedup for DOP and ON-/OFF-chip workloads62 -- 2.5.2 Model Parametrization and Validation 63 -- 2.5.2.1 Coarse-grain parametrization and validation 64 -- 2.5.2.2 Fine-grain parametrization and validation 66 -- 2.6 Model Usages 69 -- 2.6.1 Identification of Optimal System Configurations 70 -- 2.6.2 PAS-Directed Energy-Driven Runtime Frequency Scaling71 -- 2.7 Conclusion 73 -- References 75 -- 3 ENERGY EFFICIENCY IN HPC SYSTEMS 81 / Ivan Rodero and Manish Parashar -- 3.1 Introduction 81 -- 3.2 Background and Related Work 83 -- 3.2.1 CPU Power Management 83 -- 3.2.1.1 OS-level CPU power management 83 -- 3.2.1.2 Workload-level CPU power management 84.

3.2.1.3 Cluster-level CPU power management 84 -- 3.2.2 Component-Based Power Management 85 -- 3.2.2.1 Memory subsystem 85 -- 3.2.2.2 Storage subsystem 86 -- 3.2.3 Thermal-Conscious Power Management 87 -- 3.2.4 Power Management in Virtualized Datacenters 87 -- 3.3 Proactive, Component-Based Power Management 88 -- 3.3.1 Job Allocation Policies 88 -- 3.3.2 Workload Profiling 90 -- 3.4 Quantifying Energy Saving Possibilities 91 -- 3.4.1 Methodology 92 -- 3.4.2 Component-Level Power Requirements 92 -- 3.4.3 Energy Savings 94 -- 3.5 Evaluation of the Proposed Strategies 95 -- 3.5.1 Methodology 96 -- 3.5.2 Workloads 96 -- 3.5.3 Metrics 97 -- 3.6 Results 97 -- 3.7 Concluding Remarks 102 -- 3.8 Summary 103 -- References 104 -- 4 A STOCHASTIC FRAMEWORK FOR HIERARCHICAL SYSTEM-LEVEL POWERMANAGEMENT 109 / Peng Rong and Massoud Pedram -- 4.1 Introduction 109 -- 4.2 Related Work 111 -- 4.3 A Hierarchical DPM Architecture 113 -- 4.4 Modeling 114 -- 4.4.1 Model of the Application Pool 114 -- 4.4.2 Model of the Service Flow Control 118 -- 4.4.3 Model of the Simulated Service Provider 119 -- 4.4.4 Modeling Dependencies between SPs 120 -- 4.5 Policy Optimization 122 -- 4.5.1 Mathematical Formulation 122 -- 4.5.2 Optimal Time-Out Policy for Local Power Manager 123 -- 4.6 Experimental Results 125 -- 4.7 Conclusion 130 -- References 130 -- 5 ENERGY-EFFICIENT RESERVATION INFRASTRUCTURE FOR GRIDS,CLOUDS, AND NETWORKS 133 / Anne-Ce' cile Orgerie and Laurent Lefe` vre -- 5.1 Introduction 133 -- 5.2 Related Works 134 -- 5.2.1 Server and Data Center Power Management 135 -- 5.2.2 Node Optimizations 135 -- 5.2.3 Virtualization to Improve Energy Efficiency 136 -- 5.2.4 Energy Awareness in Wired Networking Equipment 136 -- 5.2.5 Synthesis 137 -- 5.3 ERIDIS: Energy-Efficient Reservation Infrastructure forLarge-Scale Distributed Systems 138 -- 5.3.1 ERIDIS Architecture 138 -- 5.3.2 Management of the Resource Reservations 141 -- 5.3.3 Resource Management and On/Off Algorithms 145 -- 5.3.4 Energy-Consumption Estimates 146.

5.3.5 Prediction Algorithms 146 -- 5.4 EARI: Energy-Aware Reservation Infrastructure for DataCenters and Grids 147 -- 5.4.1 EARI's Architecture 147 -- 5.4.2 Validation of EARI on Experimental Grid Traces 147 -- 5.5 GOC: Green Open Cloud 149 -- 5.5.1 GOC's Resource Manager Architecture 150 -- 5.5.2 Validation of the GOC Framework 152 -- 5.6 HERMES: High Level Energy-Aware Model for BandwidthReservation in End-To-End Networks 152 -- 5.6.1 HERMES' Architecture 154 -- 5.6.2 The Reservation Process of HERMES 155 -- 5.6.3 Discussion 157 -- 5.7 Summary 158 -- References 158 -- 6 ENERGY-EFFICIENT JOB PLACEMENT ON CLUSTERS, GRIDS, ANDCLOUDS 163 / Damien Borgetto, Henri Casanova, Georges Da Costa, andJean-Marc Pierson -- 6.1 Problem and Motivation 163 -- 6.1.1 Context 163 -- 6.1.2 Chapter Roadmap 164 -- 6.2 Energy-Aware Infrastructures 164 -- 6.2.1 Buildings 165 -- 6.2.2 Context-Aware Buildings 165 -- 6.2.3 Cooling 166 -- 6.3 Current Resource Management Practices 167 -- 6.3.1 Widely Used Resource Management Systems 167 -- 6.3.2 Job Requirement Description 169 -- 6.4 Scientific and Technical Challenges 170 -- 6.4.1 Theoretical Difficulties 170 -- 6.4.2 Technical Difficulties 170 -- 6.4.3 Controlling and Tuning Jobs 171 -- 6.5 Energy-Aware Job Placement Algorithms 172 -- 6.5.1 State of the Art 172 -- 6.5.2 Detailing One Approach 174 -- 6.6 Discussion 180 -- 6.6.1 Open Issues and Opportunities 180 -- 6.6.2 Obstacles for Adoption in Production 182 -- 6.7 Conclusion 183 -- References 184 -- 7 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENTSCHEDULING ALGORITHMS FOR COMPUTATIONAL GRIDS 189 / Peder Lindberg, James Leingang, Daniel Lysaker, KashifBilal, Samee Ullah Khan, Pascal Bouvry, Nasir Ghani, NasroMin-Allah, and Juan Li -- 7.1 Introduction 189 -- 7.2 Problem Formulation 191 -- 7.2.1 The System Model 191 -- 7.2.1.1 PEs 191 -- 7.2.1.2 DVS 191 -- 7.2.1.3 Tasks 192 -- 7.2.1.4 Preliminaries 192 -- 7.2.2 Formulating the Energy-Makespan Minimization Problem192 -- 7.3 Proposed Algorithms 193.

7.3.1 Greedy Heuristics 194 -- 7.3.1.1 Greedy heuristic scheduling algorithm 196 -- 7.3.1.2 Greedy-min 197 -- 7.3.1.3 Greedy-deadline 198 -- 7.3.1.4 Greedy-max 198 -- 7.3.1.5 MaxMin 199 -- 7.3.1.6 ObFun 199 -- 7.3.1.7 MinMin StdDev 202 -- 7.3.1.8 MinMax StdDev 202 -- 7.4 Simulations, Results, and Discussion 203 -- 7.4.1 Workload 203 -- 7.4.2 Comparative Results 204 -- 7.4.2.1 Small-size problems 204 -- 7.4.2.2 Large-size problems 206 -- 7.5 Related Works 211 -- 7.6 Conclusion 211 -- References 212 -- 8 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING215 / Josep LL. Berral, In igo Goiri, Ramon Nou, FerranJulia` , Josep O. Fito' , Jordi Guitart, Ricard Gavalda', and Jordi Torres -- 8.1 Introduction 215 -- 8.1.1 Energetic Impact of the Cloud 216 -- 8.1.2 An Intelligent Way to Manage Data Centers 216 -- 8.1.3 Current Autonomic Computing Techniques 217 -- 8.1.4 Power-Aware Autonomic Computing 217 -- 8.1.5 State of the Art and Case Study 218 -- 8.2 Intelligent Self-Management 218 -- 8.2.1 Classical AI Approaches 219 -- 8.2.1.1 Heuristic algorithms 219 -- 8.2.1.2 AI planning 219 -- 8.2.1.3 Semantic techniques 219 -- 8.2.1.4 Expert systems and genetic algorithms 220 -- 8.2.2 Machine Learning Approaches 220 -- 8.2.2.1 Instance-based learning 221 -- 8.2.2.2 Reinforcement learning 222 -- 8.2.2.3 Feature and example selection 225 -- 8.3 Introducing Power-Aware Approaches 225 -- 8.3.1 Use of Virtualization 226 -- 8.3.2 Turning On and Off Machines 228 -- 8.3.3 Dynamic Voltage and Frequency Scaling 229 -- 8.3.4 Hybrid Nodes and Data Centers 230 -- 8.4 Experiences of Applying ML on Power-Aware Self-Management230 -- 8.4.1 Case Study Approach 231 -- 8.4.2 Scheduling and Power Trade-Off 231 -- 8.4.3 Experimenting with Power-Aware Techniques 233 -- 8.4.4 Applying Machine Learning 236 -- 8.4.5 Conclusions from the Experiments 238 -- 8.5 Conclusions on Intelligent Power-Aware Self-Management238 -- References 240 -- 9 ENERGY EFFICIENCY METRICS FOR DATA CENTERS 245 / Javid Taheri and Albert Y. Zomaya.

9.1 Introduction 245 -- 9.1.1 Background 245 -- 9.1.2 Data Center Energy Use 246 -- 9.1.3 Data Center Characteristics 246 -- 9.1.3.1 Electric power 247 -- 9.1.3.2 Heat removal 249 -- 9.1.4 Energy Efficiency 250 -- 9.2 Fundamentals of Metrics 250 -- 9.2.1 Demand and Constraints on Data Center Operators 250 -- 9.2.2 Metrics 251 -- 9.2.2.1 Criteria for good metrics 251 -- 9.2.2.2 Methodology 252 -- 9.2.2.3 Stability of metrics 252 -- 9.3 Data Center Energy Efficiency 252 -- 9.3.1 Holistic IT Efficiency Metrics 252 -- 9.3.1.1 Fixed versus proportional overheads 254 -- 9.3.1.2 Power versus energy 254 -- 9.3.1.3 Performance versus productivity 255 -- 9.3.2 Code of Conduct 256 -- 9.3.2.1 Environmental statement 256 -- 9.3.2.2 Problem statement 256 -- 9.3.2.3 Scope of the CoC 257 -- 9.3.2.4 Aims and objectives of CoC 258 -- 9.3.3 Power Use in Data Centers 259 -- 9.3.3.1 Data center IT power to utility power relationship259 -- 9.3.3.2 Chiller efficiency and external temperature 260 -- 9.4 Available Metrics 260 -- 9.4.1 The Green Grid 261 -- 9.4.1.1 Power usage effectiveness (PUE) 261 -- 9.4.1.2 Data center efficiency (DCE) 262 -- 9.4.1.3 Data center infrastructure efficiency (DCiE) 262 -- 9.4.1.4 Data center productivity (DCP) 263 -- 9.4.2 McKinsey 263 -- 9.4.3 Uptime Institute 264 -- 9.4.3.1 Site infrastructure power overhead multiplier (SI-POM)265 -- 9.4.3.2 IT hardware power overhead multiplier (H-POM) 266 -- 9.4.3.3 DC hardware compute load per unit of computing work done266 -- 9.4.3.4 Deployed hardware utilization ratio (DH-UR) 266 -- 9.4.3.5 Deployed hardware utilization efficiency (DH-UE) 267 -- 9.5 Harmonizing Global Metrics for Data Center Energy Efficiency267 -- References 268 -- 10 AUTONOMIC GREEN COMPUTING IN LARGE-SCALE DATA CENTERS271 / Haoting Luo, Bithika Khargharia, Salim Hariri, and YoussifAl-Nashif / -- 10.1 Introduction 271 -- 10.2 Related Technologies and Techniques 272 -- 10.2.1 Power Optimization Techniques in Data Centers 272 -- 10.2.2 Design Model 273.

10.2.3 Networks 274 -- 10.2.4 Data Center Power Distribution 275 -- 10.2.5 Data Center Power-Efficient Metrics 276 -- 10.2.6 Modeling Prototype and Testbed 277 -- 10.2.7 Green Computing 278 -- 10.2.8 Energy Proportional Computing 280 -- 10.2.9 Hardware Virtualization Technology 281 -- 10.2.10 Autonomic Computing 282 -- 10.3 Autonomic Green Computing: A Case Study 283 -- 10.3.1 Autonomic Management Platform 285 -- 10.3.1.1 Platform architecture 285 -- 10.3.1.2 DEVS-based modeling and simulation platform 285 -- 10.3.1.3 Workload generator 287 -- 10.3.2 Model Parameter Evaluation 288 -- 10.3.2.1 State transitioning overhead 288 -- 10.3.2.2 VM template evaluation 289 -- 10.3.2.3 Scalability analysis 291 -- 10.3.3 Autonomic Power Efficiency Management Algorithm(Performance Per Watt) 291 -- 10.3.4 Simulation Results and Evaluation 293 -- 10.3.4.1 Analysis of energy and performance trade-offs 296 -- 10.4 Conclusion and Future Directions 297 -- References 298 -- 11 ENERGY AND THERMAL AWARE SCHEDULING IN DATA CENTERS301 / Gaurav Dhiman, Raid Ayoub, and Tajana S. Rosing -- 11.1 Introduction 301 -- 11.2 Related Work 302 -- 11.3 Intermachine Scheduling 305 -- 11.3.1 Performance and Power Profile of VMs 305 -- 11.3.2 Architecture 309 -- 11.3.2.1 vgnode 309 -- 11.3.2.2 vgxen 310 -- 11.3.2.3 vgdom 312 -- 11.3.2.4 vgserv 312 -- 11.4 Intramachine Scheduling 315 -- 11.4.1 Air-Forced Thermal Modeling and Cost 316 -- 11.4.2 Cooling Aware Dynamic Workload Scheduling 317 -- 11.4.3 Scheduling Mechanism 318 -- 11.4.4 Cooling Costs Predictor 319 -- 11.5 Evaluation 321 -- 11.5.1 Intermachine Scheduler (vGreen) 321 -- 11.5.2 Heterogeneous Workloads 323 -- 11.5.2.1 Comparison with DVFS policies 325 -- 11.5.2.2 Homogeneous workloads 328 -- 11.5.3 Intramachine Scheduler (Cool and Save) 328 -- 11.5.3.1 Results 331 -- 11.5.3.2 Overhead of CAS 333 -- 11.6 Conclusion 333 -- References 334 -- 12 QOS-AWARE POWER MANAGEMENT IN DATA CENTERS 339 / Jiayu Gong and Cheng-Zhong Xu -- 12.1 Introduction 339.

12.2 Problem Classification 340 -- 12.2.1 Objective and Constraint 340 -- 12.2.2 Scope and Time Granularities 340 -- 12.2.3 Methodology 341 -- 12.2.4 Power Management Mechanism 342 -- 12.3 Energy Efficiency 344 -- 12.3.1 Energy-Efficiency Metrics 344 -- 12.3.2 Improving Energy Efficiency 346 -- 12.3.2.1 Energy minimization with performance guarantee 346 -- 12.3.2.2 Performance maximization under power budget 348 -- 12.3.2.3 Trade-off between power and performance 348 -- 12.3.3 Energy-Proportional Computing 350 -- 12.4 Power Capping 351 -- 12.5 Conclusion 353 -- References 356 -- 13 ENERGY-EFFICIENT STORAGE SYSTEMS FOR DATA CENTERS361 / Sudhanva Gurumurthi and Anand Sivasubramaniam -- 13.1 Introduction 361 -- 13.2 Disk Drive Operation and Disk Power 362 -- 13.2.1 An Overview of Disk Drives 362 -- 13.2.2 Sources of Disk Power Consumption 363 -- 13.2.3 Disk Activity and Power Consumption 365 -- 13.3 Disk and Storage Power Reduction Techniques 366 -- 13.3.1 Exploiting the STANDBY State 368 -- 13.3.2 Reducing Seek Activity 369 -- 13.3.3 Achieving Energy Proportionality 369 -- 13.3.3.1 Hardware approaches 369 -- 13.3.3.2 Software approaches 370 -- 13.4 Using Nonvolatile Memory and Solid-State Disks 371 -- 13.5 Conclusions 372 -- References 373 -- 14 AUTONOMIC ENERGY/PERFORMANCE OPTIMIZATIONS FOR MEMORY INSERVERS 377 / Bithika Khargharia and Mazin Yousif -- 14.1 Introduction 378 -- 14.2 Classifications of Dynamic Power Management Techniques380 -- 14.2.1 Heuristic and Predictive Techniques 380 -- 14.2.2 QoS and Energy Trade-Offs 381 -- 14.3 Applications of Dynamic Power Management (DPM) 382 -- 14.3.1 Power Management of System Components in Isolation382 -- 14.3.2 Joint Power Management of System Components 383 -- 14.3.3 Holistic System-Level Power Management 383 -- 14.4 Autonomic Power and Performance Optimization of MemorySubsystems in Server Platforms 384 -- 14.4.1 Adaptive Memory Interleaving Technique for Power andPerformance Management 384 -- 14.4.1.1 Formulating the optimization problem 386.

14.4.1.2 Memory appflow 389 -- 14.4.2 Industry Techniques 389 -- 14.4.2.1 Enhancements in memory hardware design 390 -- 14.4.2.2 Adding more operating states 390 -- 14.4.2.3 Faster transition to and from low power states 390 -- 14.4.2.4 Memory consolidation 390 -- 14.5 Conclusion 391 -- References 391 -- 15 ROD: A PRACTICAL APPROACH TO IMPROVING RELIABILITY OFENERGY-EFFICIENT PARALLEL DISK SYSTEMS 395 / Shu Yin, Xiaojun Ruan, Adam Manzanares, and XiaoQin -- 15.1 Introduction 395 -- 15.2 Modeling Reliability of Energy-Efficient Parallel Disks396 -- 15.2.1 The MINT Model 396 -- 15.2.1.1 Disk utilization 398 -- 15.2.1.2 Temperature 398 -- 15.2.1.3 Power-state transition frequency 399 -- 15.2.1.4 Single disk reliability model 399 -- 15.2.2 MAID, Massive Arrays of Idle Disks 400 -- 15.3 Improving Reliability of MAID via Disk Swapping 401 -- 15.3.1 Improving Reliability of Cache Disks in MAID 401 -- 15.3.2 Swapping Disks Multiple Times 404 -- 15.4 Experimental Results and Evaluation 405 -- 15.4.1 Experimental Setup 405 -- 15.4.2 Disk Utilization 406 -- 15.4.3 The Single Disk Swapping Strategy 406 -- 15.4.4 The Multiple Disk Swapping Strategy 409 -- 15.5 Related Work 411 -- 15.6 Conclusions 412 -- References 413 -- 16 EMBRACING THE MEMORY AND I/O WALLS FOR ENERGY-EFFICIENTSCIENTIFIC COMPUTING 417 / Chung-Hsing Hsu and Wu-Chun Feng -- 16.1 Introduction 417 -- 16.2 Background and Related Work 420 -- 16.2.1 DVFS-Enabled Processors 420 -- 16.2.2 DVFS Scheduling Algorithms 421 -- 16.2.3 Memory-Aware, Interval-Based Algorithms 422 -- 16.3 (Sb(B-Adaptation: A New DVFS Algorithm 423 -- 16.3.1 The Compute-Boundedness Metric, (Sb(B 423 -- 16.3.2 The Frequency Calculating Formula, f ∗ 424 -- 16.3.3 The Online (Sb(B Estimation 425 -- 16.3.4 Putting It All Together 427 -- 16.4 Algorithm Effectiveness 429 -- 16.4.1 A Comparison to Other DVFS Algorithms 429 -- 16.4.2 Frequency Emulation 432 -- 16.4.3 The Minimum Dependence to the PMU 436 -- 16.5 Conclusions and Future Work 438 -- References 439.

17 MULTIPLE FREQUENCY SELECTION IN DVFS-ENABLED PROCESSORS TOMINIMIZE ENERGY CONSUMPTION 443 / Nikzad Babaii Rizvandi, Albert Y. Zomaya, Young Choon Lee,Ali Javadzadeh Boloori, and Javid Taheri -- 17.1 Introduction 443 -- 17.2 Energy Efficiency in HPC Systems 444 -- 17.3 Exploitation of Dynamic Voltage-Frequency Scaling446 -- 17.3.1 Independent Slack Reclamation 446 -- 17.3.2 Integrated Schedule Generation 447 -- 17.4 Preliminaries 448 -- 17.4.1 System and Application Models 448 -- 17.4.2 Energy Model 448 -- 17.5 Energy-Aware Scheduling via DVFS 450 -- 17.5.1 Optimum Continuous Frequency 450 -- 17.5.2 Reference Dynamic Voltage-Frequency Scaling (RDVFS)451 -- 17.5.3 Maximum-Minimum-Frequency for DynamicVoltage-Frequency Scaling (MMF-DVFS) 452 -- 17.5.4 Multiple Frequency Selection for DynamicVoltage-Frequency Scaling (MFS-DVFS) 453 -- 17.5.4.1 Task eligibility 454 -- 17.6 Experimental Results 456 -- 17.6.1 Simulation Settings 456 -- 17.6.2 Results 458 -- 17.7 Conclusion 461 -- References 461 -- 18 THE PARAMOUNTCY OF RECONFIGURABLE COMPUTING 465 / Reiner Hartenstein -- 18.1 Introduction 465 -- 18.2 Why Computers are Important 466 -- 18.2.1 Computing for a Sustainable Environment 470 -- 18.3 Performance Progress Stalled 472 -- 18.3.1 Unaffordable Energy Consumption of Computing 473 -- 18.3.2 Crashing into the Programming Wall 475 -- 18.4 The Tail is Wagging the Dog (Accelerators) 488 -- 18.4.1 Hardwired Accelerators 489 -- 18.4.2 Programmable Accelerators 490 -- 18.5 Reconfigurable Computing 494 -- 18.5.1 Speedup Factors by FPGAs 498 -- 18.5.2 The Reconfigurable Computing Paradox 501 -- 18.5.3 Saving Energy by Reconfigurable Computing 505 -- 18.5.3.1 Traditional green computing 506 -- 18.5.3.2 The role of graphics processors 507 -- 18.5.3.3 Wintel versus ARM 508 -- 18.5.4 Reconfigurable Computing is the Silver Bullet 511 -- 18.5.4.1 A new world model of computing 511 -- 18.5.5 The Twin-Paradigm Approach to Tear Down the Wall 514 -- 18.5.6 A Mass Movement Needed as Soon as Possible 517.

18.5.6.1 Legacy software from the mainframe age 518 -- 18.5.7 How to Reinvent Computing 519 18.6 Conclusions 526 -- References 529 -- 19 WORKLOAD CLUSTERING FOR INCREASING ENERGY SAVINGS ONEMBEDDED MPSOCS 549 / Ozcan Ozturk, Mahmut Kandemir, and Sri Hari KrishnaNarayanan -- 19.1 Introduction 549 -- 19.2 Embedded MPSoC Architecture, Execution Model, and RelatedWork 550 -- 19.3 Our Approach 551 -- 19.3.1 Overview 551 -- 19.3.2 Technical Details and Problem Formulation 553 -- 19.3.2.1 System and job model 553 -- 19.3.2.2 Mathematical programing model 554 -- 19.3.2.3 Example 557 -- 19.4 Experimental Evaluation 560 -- 19.5 Conclusions 564 -- References 565 -- 20 ENERGY-EFFICIENT INTERNET INFRASTRUCTURE 567 / Weirong Jiang and Viktor K. Prasanna -- 20.1 Introduction 567 -- 20.1.1 Performance Challenges 568 -- 20.1.2 Existing Packet Forwarding Approaches 570 -- 20.1.2.1 Software approaches 570 -- 20.1.2.2 Hardware approaches 571 -- 20.2 SRAM-Based Pipelined IP Lookup Architectures: Alternativeto TCAMs 571 -- 20.3 Data Structure Optimization for Power Efficiency 573 -- 20.3.1 Problem Formulation 574 -- 20.3.1.1 Non-pipelined and pipelined engines 574 -- 20.3.1.2 Power function of SRAM 575 -- 20.3.2 Special Case: Uniform Stride 576 -- 20.3.3 Dynamic Programming 576 -- 20.3.4 Performance Evaluation 577 -- 20.3.4.1 Results for non-pipelined architecture 578 -- 20.3.4.2 Results for pipelined architecture 578 -- 20.4 Architectural Optimization to Reduce Dynamic PowerDissipation 580 -- 20.4.1 Analysis and Motivation 581 -- 20.4.1.1 Traffic locality 582 -- 20.4.1.2 Traffic rate variation 582 -- 20.4.1.3 Access frequency on different stages 583 -- 20.4.2 Architecture-Specific Techniques 583 -- 20.4.2.1 Inherent caching 584 -- 20.4.2.2 Local clocking 584 -- 20.4.2.3 Fine-grained memory enabling 585 -- 20.4.3 Performance Evaluation 585 -- 20.5 Related Work 588 -- 20.6 Summary 589 -- References 589 -- 21 DEMAND RESPONSE IN THE SMART GRID: A DISTRIBUTED COMPUTINGPERSPECTIVE 593 / Chen Wang and Martin De Groot.

21.1 Introduction 593 -- 21.2 Demand Response 595 -- 21.2.1 Existing Demand Response Programs 595 -- 21.2.2 Demand Response Supported by the Smart Grid 597 -- 21.3 Demand Response as a Distributed System 600 -- 21.3.1 An Overlay Network for Demand Response 600 -- 21.3.2 Event Driven Demand Response 602 -- 21.3.3 Cost Driven Demand Response 604 -- 21.3.4 A Decentralized Demand Response Framework 609 -- 21.3.5 Accountability of Coordination Decision Making 610 -- 21.4 Summary 611 -- References 611 -- 22 RESOURCE MANAGEMENT FOR DISTRIBUTED MOBILE COMPUTING615 / Jong-Kook Kim -- 22.1 Introduction 615 -- 22.2 Single-Hop Energy-Constrained Environment 617 -- 22.2.1 System Model 617 -- 22.2.2 Related Work 620 -- 22.2.3 Heuristic Descriptions 621 -- 22.2.3.1 Mapping event 621 -- 22.2.3.2 Scheduling communications 621 -- 22.2.3.3 Opportunistic load balancing and minimum energy greedyheuristics 622 -- 22.2.3.4 ME-MC heuristic 622 -- 22.2.3.5 ME-ME heuristic 624 -- 22.2.3.6 CRME heuristic 625 -- 22.2.3.7 Originator and random 626 -- 22.2.3.8 Upper bound 626 -- 22.2.4 Simulation Model 628 -- 22.2.5 Results 630 -- 22.2.6 Summary 634 -- 22.3 Multihop Distributed Mobile Computing Environment 635 -- 22.3.1 The Multihop System Model 635 -- 22.3.2 Energy-Aware Routing Protocol 636 -- 22.3.2.1 Overview 636 -- 22.3.2.2 DSDV 637 -- 22.3.2.3 DSDV remaining energy 637 -- 22.3.2.4 DSDV-energy consumption per remaining energy 637 -- 22.3.3 Heuristic Description 638 -- 22.3.3.1 Random 638 -- 22.3.3.2 Estimated minimum total energy (EMTE) 638 -- 22.3.3.3 K-percent-speed (KPS) and K-percent-energy (KPE)639 -- 22.3.3.4 Energy ratio and distance (ERD) 639 -- 22.3.3.5 ETC and distance (ETCD) 640 -- 22.3.3.6 Minimum execution time (MET) 640 -- 22.3.3.7 Minimum completion time (MCT) and minimum completiontime with DVS (MCT-DVS) 640 -- 22.3.3.8 Switching algorithm (SA) 640 -- 22.3.4 Simulation Model 641 -- 22.3.5 Results 643 -- 22.3.5.1 Distributed resource management 643 -- 22.3.5.2 Energy-aware protocol 644.

22.3.6 Summary 644 -- 22.4 Future Work 647 -- References 647 -- 23 AN ENERGY-AWARE FRAMEWORK FOR MOBILE DATA MINING 653 / Carmela Comito, Domenico Talia, and Paolo Trunfio -- 23.1 Introduction 653 -- 23.2 System Architecture 654 -- 23.3 Mobile Device Components 657 -- 23.4 Energy Model 659 -- 23.5 Clustering Scheme 664 -- 23.5.1 Clustering the M2M Architecture 666 -- 23.6 Conclusion 670 -- References 670 -- 24 ENERGY AWARENESS AND EFFICIENCY IN WIRELESS SENSORNETWORKS: FROM PHYSICAL DEVICES TO THE COMMUNICATION LINK 673 / Fla' via C. Delicato and Paulo F. Pires -- 24.1 Introduction 673 -- 24.2 WSN and Power Dissipation Models 676 -- 24.2.1 Network and Node Architecture 676 -- 24.2.2 Sources of Power Dissipation in WSNs 679 -- 24.3 Strategies for Energy Optimization 683 -- 24.3.1 Intranode Level 684 -- 24.3.1.1 Duty cycling 685 -- 24.3.1.2 Adaptive sensing 691 -- 24.3.1.3 Dynamic voltage scale (DVS) 693 -- 24.3.1.4 OS task scheduling 694 -- 24.3.2 Internode Level 695 -- 24.3.2.1 Transmission power control 695 -- 24.3.2.2 Dynamic modulation scaling 696 -- 24.3.2.3 Link layer optimizations 698 -- 24.4 Final Remarks 701 -- References 702 -- 25 NETWORK-WIDE STRATEGIES FOR ENERGY EFFICIENCY IN WIRELESSSENSOR NETWORKS 709 / Fla' via C. Delicato and Paulo F. Pires -- 25.1 Introduction 709 -- 25.2 Data Link Layer 711 -- 25.2.1 Topology Control Protocols 712 -- 25.2.2 Energy-Efficient MAC Protocols 714 -- 25.2.2.1 Scheduled MAC protocols in WSNs 716 -- 25.2.2.2 Contention-based MAC protocols 717 -- 25.3 Network Layer 719 -- 25.3.1 Flat and Hierarchical Protocols 722 -- 25.4 Transport Layer 725 -- 25.5 Application Layer 729 -- 25.5.1 Task Scheduling 729 -- 25.5.2 Data Aggregation and Data Fusion in WSNs 733 -- 25.5.2.1 Approaches of data fusion for energy efficiency 735 -- 25.5.2.2 Data aggregation strategies 736 -- 25.6 Final Remarks 740 -- References 741 -- 26 ENERGY MANAGEMENT IN HETEROGENEOUS WIRELESS HEALTH CARENETWORKS 751 / Nima Nikzad, Priti Aghera, Piero Zappi, and Tajana S.Rosing.

26.1 Introduction 751 -- 26.2 System Model 753 -- 26.2.1 Health Monitoring Task Model 753 -- 26.3 Collaborative Distributed Environmental Sensing 755 -- 26.3.1 Node Neighborhood and Localization Rate 757 -- 26.3.2 Energy Ratio and Sensing Rate 758 -- 26.3.3 Duty Cycling and Prediction 759 -- 26.4 Task Assignment in a Body Area Network 760 -- 26.4.1 Optimal Task Assignment 760 -- 26.4.2 Dynamic Task Assignment 762 -- 26.4.2.1 DynAGreen algorithm 763 -- 26.4.2.2 DynAGreenLife algorithm 768 -- 26.5 Results 771 -- 26.5.1 Collaborative Sensing 771 -- 26.5.1.1 Results 772 -- 26.5.2 Dynamic Task Assignment 776 -- 26.5.2.1 Performance in static conditions 777 -- 26.5.2.2 Dynamic adaptability 780 -- 26.6 Conclusion 784 -- References 785 -- INDEX 787.

Restricted to subscribers or individual electronic text purchasers.

"The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005. From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems. These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems. This book brings together a group of outstanding researchers that investigate the different facets of green and energy efficient distributed computing.Key features: One of the first books of its kind Features latest research findings on emerging topics by well-known scientists Valuable research for grad students, postdocs, and researchers Research will greatly feed into other technologies and application domains"-- Provided by publisher.

Also available in print.

Mode of access: World Wide Web

Digitized and made available by: Books24x7.com.

Description based on PDF viewed 12/22/2015.

There are no comments for this item.

Log in to your account to post a comment.