The Elements of Statistical Learning [electronic resource] : Data Mining, Inference, and Prediction, Second Edition / by Trevor Hastie, Robert Tibshirani, Jerome Friedman.
By: Hastie, Trevor [author.].
Contributor(s): Tibshirani, Robert [author.] | Friedman, Jerome [author.] | SpringerLink (Online service).
Material type: BookSeries: Springer Series in Statistics: Publisher: New York, NY : Springer New York : Imprint: Springer, 2009Edition: 2nd ed. 2009.Description: XXII, 745 p. 658 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780387848587.Subject(s): Artificial intelligence | Data mining | Probabilities | Statistics | Bioinformatics | Artificial Intelligence | Data Mining and Knowledge Discovery | Probability Theory | Statistical Theory and Methods | Computational and Systems BiologyAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 006.3 Online resources: Click here to access onlineOverview of Supervised Learning -- Linear Methods for Regression -- Linear Methods for Classification -- Basis Expansions and Regularization -- Kernel Smoothing Methods -- Model Assessment and Selection -- Model Inference and Averaging -- Additive Models, Trees, and Related Methods -- Boosting and Additive Trees -- Neural Networks -- Support Vector Machines and Flexible Discriminants -- Prototype Methods and Nearest-Neighbors -- Unsupervised Learning -- Random Forests -- Ensemble Learning -- Undirected Graphical Models -- High-Dimensional Problems: p ? N.
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
There are no comments for this item.