Normal view MARC view ISBD view

Nanofabrication and applications of smart nanosensors / edited by Kaushik Pal and Fernando Gomes.

Contributor(s): Pal, Kaushik | Gomes, Fernando.
Material type: materialTypeLabelBookSeries: Micro and Nano Technologies Ser: Publisher: Amsterdam : Elsevier, 2020Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780128235553; 0128235551.Subject(s): Nanostructured materials | Detectors | Nanostructures | Nanomat�eriaux | Detectors | Nanostructured materialsAdditional physical formats: Print version:: Nanofabrication and applications of smart nanosensors.DDC classification: 620.1/15 Online resources: ScienceDirect
Contents:
Intro -- Nanofabrication for Smart Nanosensor Applications -- Copyright -- Contents -- Contributors -- Editors' biography -- Chapter 1: Introduction to nanomaterials and nanomanufacturing for nanosensors -- 1.1. Nanosensors -- 1.1.1. Types of nanosensors -- 1.1.2. Applications of nanosensors -- 1.2. Nanomaterials for nanosensors -- 1.2.1. Properties of nanomaterials for nanosensors -- 1.2.1.1. Optical properties -- 1.2.1.2. Electronic properties -- 1.2.1.3. Magnetic properties -- 1.2.2. Different nanomaterials for nanosensors -- 1.2.2.1. Carbon nanotube -- 1.2.2.2. Nanowires
1.2.2.3. Nanoparticles -- 1.2.2.4. Fullerenes -- 1.3. Nanomanufacturing -- 1.3.1. Nanomanufacturing processes -- 1.3.1.1. Top-down approach -- 1.3.1.2. Bottom-up approach -- 1.3.1.3. Molecular self-assembly -- 1.4. Nanomanufacturing processes for nanosensors -- 1.4.1. Electron beam lithography -- 1.4.2. Focused ion beam lithography -- 1.4.3. X-ray lithography -- 1.5. Conclusions and future directions -- References -- Chapter 2: Features and complex model of gold nanoparticle fabrication for nanosensor applications -- 2.1. Introduction -- 2.1.1. Applications of nanoparticles
2.1.2. Growth of gold nanoparticles -- 2.2. Mathematical model of gold nanoparticle fabrication -- 2.2.1. Governing equation of gold nanoparticle fabrication -- 2.2.2. Nondimensionalized parameter for governing equations -- 2.2.3. Discretization using finite difference method for gold nanoparticle fabrication problem -- 2.2.4. Linear system equation formulation for gold nanoparticle fabrication -- 2.2.5. Visualization of the mathematical model for gold nanoparticle fabrication -- 2.3. Numerical implementation and parallelization for gold nanoparticle fabrication -- 2.3.1. Numerical implementation
2.3.1.1. Alternating group explicit (AGE) -- 2.3.1.2. Red-Black Gauss-Seidel method (RBGS) -- 2.3.1.3. Jacobi method (JB) -- 2.3.2. Parallelization of iterative methods for solving one-dimensional mathematical model -- 2.3.2.1. 1D parallel alternating group explicit method (1D PAGE) -- 2.3.2.2. 1D parallel Red-Black Gauss-Seidel method (1D PRBGS) -- 2.3.2.3. 1D parallel Jacobi method (1D PJB) -- 2.3.3. Parallel performance evaluation for fabricating gold nanoparticles -- 2.4. Conclusion and recommendation -- References -- Chapter 3: Designing of novel nanosensors for environmental aspects
3.1. Introduction -- 3.2. ABCs of the design strategy for nano-enabled sensors -- 3.2.1. A note on the signal transduction mechanism -- 3.2.1.1. Electrical signal transduction -- 3.2.1.2. Optical signal transduction -- 3.2.1.3. Magnetic signal transduction -- 3.2.2. A few representative nanomaterials and recognition elements -- 3.3. Pertinent attributes for the design of nano-enabled sensors for environmental monitoring -- 3.4. Exemplary evidence of novel nanosensor design strategies for environmental applications -- 3.4.1. Pathogen detections -- 3.4.2. Detection of heavy metals
    average rating: 0.0 (0 votes)
No physical items for this record

Includes index.

Intro -- Nanofabrication for Smart Nanosensor Applications -- Copyright -- Contents -- Contributors -- Editors' biography -- Chapter 1: Introduction to nanomaterials and nanomanufacturing for nanosensors -- 1.1. Nanosensors -- 1.1.1. Types of nanosensors -- 1.1.2. Applications of nanosensors -- 1.2. Nanomaterials for nanosensors -- 1.2.1. Properties of nanomaterials for nanosensors -- 1.2.1.1. Optical properties -- 1.2.1.2. Electronic properties -- 1.2.1.3. Magnetic properties -- 1.2.2. Different nanomaterials for nanosensors -- 1.2.2.1. Carbon nanotube -- 1.2.2.2. Nanowires

1.2.2.3. Nanoparticles -- 1.2.2.4. Fullerenes -- 1.3. Nanomanufacturing -- 1.3.1. Nanomanufacturing processes -- 1.3.1.1. Top-down approach -- 1.3.1.2. Bottom-up approach -- 1.3.1.3. Molecular self-assembly -- 1.4. Nanomanufacturing processes for nanosensors -- 1.4.1. Electron beam lithography -- 1.4.2. Focused ion beam lithography -- 1.4.3. X-ray lithography -- 1.5. Conclusions and future directions -- References -- Chapter 2: Features and complex model of gold nanoparticle fabrication for nanosensor applications -- 2.1. Introduction -- 2.1.1. Applications of nanoparticles

2.1.2. Growth of gold nanoparticles -- 2.2. Mathematical model of gold nanoparticle fabrication -- 2.2.1. Governing equation of gold nanoparticle fabrication -- 2.2.2. Nondimensionalized parameter for governing equations -- 2.2.3. Discretization using finite difference method for gold nanoparticle fabrication problem -- 2.2.4. Linear system equation formulation for gold nanoparticle fabrication -- 2.2.5. Visualization of the mathematical model for gold nanoparticle fabrication -- 2.3. Numerical implementation and parallelization for gold nanoparticle fabrication -- 2.3.1. Numerical implementation

2.3.1.1. Alternating group explicit (AGE) -- 2.3.1.2. Red-Black Gauss-Seidel method (RBGS) -- 2.3.1.3. Jacobi method (JB) -- 2.3.2. Parallelization of iterative methods for solving one-dimensional mathematical model -- 2.3.2.1. 1D parallel alternating group explicit method (1D PAGE) -- 2.3.2.2. 1D parallel Red-Black Gauss-Seidel method (1D PRBGS) -- 2.3.2.3. 1D parallel Jacobi method (1D PJB) -- 2.3.3. Parallel performance evaluation for fabricating gold nanoparticles -- 2.4. Conclusion and recommendation -- References -- Chapter 3: Designing of novel nanosensors for environmental aspects

3.1. Introduction -- 3.2. ABCs of the design strategy for nano-enabled sensors -- 3.2.1. A note on the signal transduction mechanism -- 3.2.1.1. Electrical signal transduction -- 3.2.1.2. Optical signal transduction -- 3.2.1.3. Magnetic signal transduction -- 3.2.2. A few representative nanomaterials and recognition elements -- 3.3. Pertinent attributes for the design of nano-enabled sensors for environmental monitoring -- 3.4. Exemplary evidence of novel nanosensor design strategies for environmental applications -- 3.4.1. Pathogen detections -- 3.4.2. Detection of heavy metals

There are no comments for this item.

Log in to your account to post a comment.