Normal view MARC view ISBD view

Porous silicon for biomedical applications / edited by H�elder A. Santos.

Contributor(s): Santos, H�elder A [editor.].
Material type: materialTypeLabelBookSeries: Woodhead Publishing series in biomaterials: Publisher: Duxford : Woodhead Publishing, 2021Edition: Second edition.Description: 1 online resource : illustrations (black and white, and color).Content type: text | still image Media type: computer Carrier type: online resourceISBN: 9780128225240; 0128225246.Subject(s): Porous silicon | Biomedical engineering | Silicium poreux | G�enie biom�edical | biomedical engineering | Biomedical engineering | Porous siliconAdditional physical formats: Print version :: No titleDDC classification: 620.193 Online resources: ScienceDirect
Contents:
Intro -- Porous Silicon for Biomedical Applications -- Copyright -- Contents -- Contributors -- Preface -- References -- Introduction -- References -- Part 1: Fundamentals of porous silicon for biomedical applications -- Chapter 1: Thermal stabilization of porous silicon -- 1.1. Introduction -- 1.2. Thermal oxidation -- 1.3. Thermal carbonization -- 1.4. Thermal nitridation -- 1.5. Structural effects of thermal annealing -- 1.6. Analytical aspects -- 1.7. Conclusions and future trends -- References -- Chapter 2: Thermal properties of nanoporous silicon materials -- 2.1. Introduction -- 2.2. Thermal constants of PSi -- 2.2.1. Thermal characterizations of nanostructures -- 2.2.2. Experimental and theoretical analyses -- 2.3. Application studies -- 2.3.1. Survey -- 2.3.2. Thermo-acoustic effect -- 2.3.2.1. Device structure and emission mechanism -- 2.3.2.2. Frequency response -- 2.3.2.3. Pulsed operation -- 2.3.3. Applications of thermos-acoustic device -- 2.3.3.1. Digital speaker -- 2.3.3.2. Object sensing in air -- 2.3.3.3. Noncontact actuator -- 2.3.3.4. Bio-acoustics -- 2.3.3.5. Chemical reactor array -- 2.4. Conclusion and future trends -- Acknowledgments -- References -- Chapter 3: Photochemical and nonthermal chemical modification of porous silicon -- 3.1. Introduction -- 3.2. Hydrosilylation and controlled surface modification of Si -- 3.3. Surface photochemistry: An introduction -- 3.3.1. The nature of electronic levels at interfaces -- 3.3.2. Initiating photochemistry at silicon surfaces -- 3.4. Photochemical mechanisms on H/Si surfaces -- 3.5. Laser ablation -- 3.6. Electrochemical grafting -- 3.7. Sonochemistry -- 3.8. Microwave-induced chemistry -- 3.9. Mechanochemistry -- 3.10. Conclusions and future trends -- References -- Chapter 4: Protein-modified porous silicon optical devices for biosensing -- 4.1. Introduction.
4.2. Proteins on surfaces -- 4.2.1. Proteins and other biomolecules -- 4.2.2. Biofunctionalization of the porous silicon surface -- 4.3. Porous silicon monolayers and multilayers -- 4.3.1. Hybrid graphene oxide-porous silicon-based transducer -- 4.4. Characterization methods -- 4.4.1. Spectroscopic reflectometry (FFT theory) -- 4.4.2. Photoluminescence spectroscopy -- 4.4.3. Water contact angle -- 4.4.4. Scanning electron microscopy -- 4.4.5. Atomic force microscopy -- 4.5. Protein-modified PSi -- 4.5.1. Protein infiltration in PSi -- 4.5.2. Biofunctionalization of PSi and GO-PSi platforms for optical sensing -- 4.6. Conclusions and future trends -- Acknowledgments -- References -- Chapter 5: Biocompatibility of porous silicon -- 5.1. Biocompatibility -- 5.1.1. Definition -- 5.1.2. Porous silicon bioactive properties -- 5.2. Biodegradability -- 5.2.1. Degradation rate for biomedical applications -- 5.2.2. The fate of orthosilicic acid in the human body -- 5.2.3. The link between PSi porosity and biocompatibility/biodegradability -- 5.3. Cytotoxicity -- 5.3.1. Cytotoxicity of PSi -- 5.3.2. The link between PSi particle size and cytocompatibility -- 5.3.2.1. THCPSi particles -- 5.3.2.2. TOPSi particles -- 5.4. The fate of porous silicon in the body -- 5.4.1. Retention and excretion of PSi particles -- 5.4.1.1. Plasma-mimetic fluid -- 5.4.1.2. Gastrointestinal tract -- 5.4.1.3. Tumor-associated cells -- 5.4.2. Metabolism and degradation of PSi particles in different organs -- 5.4.2.1. Eye -- 5.4.2.2. Liver and spleen -- 5.4.2.3. Other organs in systemic circulation -- 5.5. In vivo behavior of PSi implants -- 5.5.1. BrachySil (now OncoSil) -- 5.5.2. PSi/polymer composites -- 5.5.3. PSi membranes -- 5.6. Porous silicon for biomimetic reactors and biohybrid systems -- 5.6.1. Biomimetic reactors -- 5.6.2. Biohybrid systems.
5.6.2.1. TCPSi and THCPSi particles -- 5.6.2.2. TOPSi particles -- 5.7. Porous silicon for the design of targeted nanocarriers -- 5.8. Porous silicon for radiation theranostics -- 5.9. Porous silicon for tissue engineering -- 5.10. Missing links -- 5.10.1. Standardization -- 5.10.2. In vitro studies -- 5.10.3. In vivo studies -- 5.11. Conclusion -- References -- Part 2: Porous silicon for bioimaging and biosensing applications -- Chapter 6: Optical properties of porous silicon materials -- 6.1. Introduction -- 6.2. Morphology of PSi -- 6.3. Effective medium models -- 6.3.1. Maxwell-Garnett (MG) model -- 6.3.2. Bruggeman model -- 6.3.3. Looyenga-Landau-Lifshitz (LLL) model -- 6.3.4. Bergman's representation -- 6.4. Optical constants of nano-PSi -- 6.5. Stability of the optical properties of nano-PSi -- 6.6. Multilayer structures -- 6.7. Optical applications of PSi optical filters -- 6.7.1. Filtered light-emitting devices -- 6.7.2. Filtered photodetectors -- 6.7.3. Chemical sensors -- 6.7.4. Biosensors -- 6.8. Conclusion and future trends -- References -- Chapter 7: Radiolabeled porous silicon for nuclear imaging and theranostic applications -- 7.1. Introduction -- 7.2. Methods for tracing drug delivery -- 7.2.1. Diagnostic methods -- 7.2.2. Theranostics -- 7.2.3. Imaging in drug development -- 7.3. Radiolabeled PSi materials -- 7.3.1. Methods of preparation -- 7.3.2. Evaluation of biodistribution -- 7.3.3. Evaluation of targeted accumulation -- 7.3.3.1. Heart targeted PSi nanoparticles -- 7.3.3.2. Tumor-targeted PSi nanoparticles -- 7.3.4. Carrier for therapeutic radionuclides -- 7.4. Conclusions and future trends -- References -- Chapter 8: Porous silicon for targeting microorganisms: Detection and treatment -- 8.1. Introduction -- 8.2. Advancements in microorganism detection -- 8.2.1. Biosensing of bacteria within ``real samples��.
8.2.2. Sensitivity and signal enhancement -- 8.2.3. Monitoring bacterial behavior -- 8.3. PSi as an antibacterial agent -- 8.4. Conclusions and future trends -- References -- Chapter 9: Porous silicon biosensors for DNA sensing -- 9.1. Introduction -- 9.1.1. DNA sensing background -- 9.1.2. Important metrics for DNA sensing -- 9.1.2.1. Sensitivity and detection limit -- 9.1.2.2. Selectivity -- 9.1.2.3. Sensor response time -- 9.1.2.4. Limitations on sequence length -- 9.1.3. Other existing techniques for DNA detection and sequencing -- 9.2. PSi sensor preparation -- 9.2.1. Functionalization techniques -- 9.2.2. DNA attachment approaches: Direct infiltration of pre-synthesized DNA or in situ DNA synthesis -- 9.3. PSi DNA sensor structures, measurement techniques, and sensitivity -- 9.3.1. Optical transduction -- 9.3.1.1. Reflection spectroscopy -- Single layer interferometers -- Waveguides and other guided wave structures -- Bragg mirrors and microcavities -- Multilayer particles -- 9.3.1.2. Absorption spectroscopy -- 9.3.1.3. Photoluminescence (PL) and fluorescence -- Single-layer -- Microcavity -- 9.3.1.4. Surface enhanced Raman spectroscopy (SERS) -- 9.3.2. Electrical and electrochemical transduction -- 9.4. Corrosion of PSi DNA sensors -- 9.5. Effect of pore size on DNA infiltration and detection -- 9.6. Control of DNA surface density in nanoscale pores -- 9.7. Kinetics for real-time sensing -- 9.8. Conclusions and future trends -- References -- Chapter 10: Near-infrared imaging for in vivo assessment of porous silicon-based materials -- 10.1. Introduction -- 10.2. Fabrication of PSi-based composited materials with NIR PL -- 10.3. Assessment of the fate of PSi-based composited materials using in vivo imaging -- 10.4. Monitoring the physiological microenvironments of pathological tissues in vivo -- 10.5. Conclusions and future perspectives.
    average rating: 0.0 (0 votes)
No physical items for this record

<p>Introduction <i>H.A. Santos</i> <b>Part I: Fundamentals of porous silicon for biomedical applications </b>1. Thermal stabilization of porous silicon <i>J. Salonen and E. M�akil�a </i>2. Thermal properties of nanoporous silicon materials <i>N. Koshida </i>3. Photochemical and nonthermal chemical modification of porous silicon <i>K.W. Kolasinski </i>4. Protein-modified porous silicon optical devices for biosensing <i>M. Terracciano, C. Tramontano, R. Moretta, B. Miranda, N. Borbone, L. De Stefano, and I. Rea </i>5. Biocompatibility of porous silicon <i>I.S. Naiyeju and L.M. Bimbo</i></p> <p><b>Part II: Porous silicon for bioimaging and biosensing applications </b>6. Optical properties of porous silicon materials <i>V. Torres-Costa and R.J. Mart�in-Palma </i>7. Radiolabeled porous silicon for nuclear imaging and theranostic applications <i>M. Sarparanta and A.J. Airaksinen </i>8. Porous silicon for targeting microorganisms: Detection and treatment <i>N. Massad-Ivanir, S. Arshavsky-Graham, and E. Segal</i> 9. Porous silicon biosensors for DNA sensing <i>G.A. Rodriguez, J.L. Lawrie, R. Layouni, and S.M. Weiss</i> 10. Near-infrared imaging for in vivo assessment of porous silicon-based materials <i>B. Xia, J. Li, and Y. Gao </i>11. Porous silicon-based sensors for protein detection <i>E.E. Antunez, M.A. Martin, and N.H. Voelcker</i></p> <p><b>Part III: Porous silicon for drug delivery, cancer therapy, and tissue engineering applications </b>12. Nanoporous silicon to enhance oral delivery of poorly water-soluble drugs <i>H.B. Schultz, P. Joyce, C.A. Prestidge, and T.J. Barnes </i>13. Porous silicon for tumor targeting and imaging <i>J.-H. Park, M. Jeong, and H. Kim</i> 14. Porous silicon-polymer composites for cell culture and tissue engineering <i>S.J.P. McInnes, R.B. Vasani, N.K. McMillan, and N.H. Voelcker</i> 15. Porous silicon and related composites as functional tissue engineering scaffolds <i>N.K. McMillan and J.L. Coffer </i>16. Porous silicon in photodynamic and photothermal therapy <i>L.A. Osminkina and M.B. Gongalsky </i>17. Porous silicon microneedles and nanoneedles for biomedical applications <i>C. Chiappini</i> 18. Porous silicon materials for cancer and immunotherapy <i>F. Fontana, Z. Liu, J. Hirvonen, and H.A. Santos</i></p>

Includes index.

Description based on CIP data; resource not viewed.

Includes bibliographical references and index.

Intro -- Porous Silicon for Biomedical Applications -- Copyright -- Contents -- Contributors -- Preface -- References -- Introduction -- References -- Part 1: Fundamentals of porous silicon for biomedical applications -- Chapter 1: Thermal stabilization of porous silicon -- 1.1. Introduction -- 1.2. Thermal oxidation -- 1.3. Thermal carbonization -- 1.4. Thermal nitridation -- 1.5. Structural effects of thermal annealing -- 1.6. Analytical aspects -- 1.7. Conclusions and future trends -- References -- Chapter 2: Thermal properties of nanoporous silicon materials -- 2.1. Introduction -- 2.2. Thermal constants of PSi -- 2.2.1. Thermal characterizations of nanostructures -- 2.2.2. Experimental and theoretical analyses -- 2.3. Application studies -- 2.3.1. Survey -- 2.3.2. Thermo-acoustic effect -- 2.3.2.1. Device structure and emission mechanism -- 2.3.2.2. Frequency response -- 2.3.2.3. Pulsed operation -- 2.3.3. Applications of thermos-acoustic device -- 2.3.3.1. Digital speaker -- 2.3.3.2. Object sensing in air -- 2.3.3.3. Noncontact actuator -- 2.3.3.4. Bio-acoustics -- 2.3.3.5. Chemical reactor array -- 2.4. Conclusion and future trends -- Acknowledgments -- References -- Chapter 3: Photochemical and nonthermal chemical modification of porous silicon -- 3.1. Introduction -- 3.2. Hydrosilylation and controlled surface modification of Si -- 3.3. Surface photochemistry: An introduction -- 3.3.1. The nature of electronic levels at interfaces -- 3.3.2. Initiating photochemistry at silicon surfaces -- 3.4. Photochemical mechanisms on H/Si surfaces -- 3.5. Laser ablation -- 3.6. Electrochemical grafting -- 3.7. Sonochemistry -- 3.8. Microwave-induced chemistry -- 3.9. Mechanochemistry -- 3.10. Conclusions and future trends -- References -- Chapter 4: Protein-modified porous silicon optical devices for biosensing -- 4.1. Introduction.

4.2. Proteins on surfaces -- 4.2.1. Proteins and other biomolecules -- 4.2.2. Biofunctionalization of the porous silicon surface -- 4.3. Porous silicon monolayers and multilayers -- 4.3.1. Hybrid graphene oxide-porous silicon-based transducer -- 4.4. Characterization methods -- 4.4.1. Spectroscopic reflectometry (FFT theory) -- 4.4.2. Photoluminescence spectroscopy -- 4.4.3. Water contact angle -- 4.4.4. Scanning electron microscopy -- 4.4.5. Atomic force microscopy -- 4.5. Protein-modified PSi -- 4.5.1. Protein infiltration in PSi -- 4.5.2. Biofunctionalization of PSi and GO-PSi platforms for optical sensing -- 4.6. Conclusions and future trends -- Acknowledgments -- References -- Chapter 5: Biocompatibility of porous silicon -- 5.1. Biocompatibility -- 5.1.1. Definition -- 5.1.2. Porous silicon bioactive properties -- 5.2. Biodegradability -- 5.2.1. Degradation rate for biomedical applications -- 5.2.2. The fate of orthosilicic acid in the human body -- 5.2.3. The link between PSi porosity and biocompatibility/biodegradability -- 5.3. Cytotoxicity -- 5.3.1. Cytotoxicity of PSi -- 5.3.2. The link between PSi particle size and cytocompatibility -- 5.3.2.1. THCPSi particles -- 5.3.2.2. TOPSi particles -- 5.4. The fate of porous silicon in the body -- 5.4.1. Retention and excretion of PSi particles -- 5.4.1.1. Plasma-mimetic fluid -- 5.4.1.2. Gastrointestinal tract -- 5.4.1.3. Tumor-associated cells -- 5.4.2. Metabolism and degradation of PSi particles in different organs -- 5.4.2.1. Eye -- 5.4.2.2. Liver and spleen -- 5.4.2.3. Other organs in systemic circulation -- 5.5. In vivo behavior of PSi implants -- 5.5.1. BrachySil (now OncoSil) -- 5.5.2. PSi/polymer composites -- 5.5.3. PSi membranes -- 5.6. Porous silicon for biomimetic reactors and biohybrid systems -- 5.6.1. Biomimetic reactors -- 5.6.2. Biohybrid systems.

5.6.2.1. TCPSi and THCPSi particles -- 5.6.2.2. TOPSi particles -- 5.7. Porous silicon for the design of targeted nanocarriers -- 5.8. Porous silicon for radiation theranostics -- 5.9. Porous silicon for tissue engineering -- 5.10. Missing links -- 5.10.1. Standardization -- 5.10.2. In vitro studies -- 5.10.3. In vivo studies -- 5.11. Conclusion -- References -- Part 2: Porous silicon for bioimaging and biosensing applications -- Chapter 6: Optical properties of porous silicon materials -- 6.1. Introduction -- 6.2. Morphology of PSi -- 6.3. Effective medium models -- 6.3.1. Maxwell-Garnett (MG) model -- 6.3.2. Bruggeman model -- 6.3.3. Looyenga-Landau-Lifshitz (LLL) model -- 6.3.4. Bergman's representation -- 6.4. Optical constants of nano-PSi -- 6.5. Stability of the optical properties of nano-PSi -- 6.6. Multilayer structures -- 6.7. Optical applications of PSi optical filters -- 6.7.1. Filtered light-emitting devices -- 6.7.2. Filtered photodetectors -- 6.7.3. Chemical sensors -- 6.7.4. Biosensors -- 6.8. Conclusion and future trends -- References -- Chapter 7: Radiolabeled porous silicon for nuclear imaging and theranostic applications -- 7.1. Introduction -- 7.2. Methods for tracing drug delivery -- 7.2.1. Diagnostic methods -- 7.2.2. Theranostics -- 7.2.3. Imaging in drug development -- 7.3. Radiolabeled PSi materials -- 7.3.1. Methods of preparation -- 7.3.2. Evaluation of biodistribution -- 7.3.3. Evaluation of targeted accumulation -- 7.3.3.1. Heart targeted PSi nanoparticles -- 7.3.3.2. Tumor-targeted PSi nanoparticles -- 7.3.4. Carrier for therapeutic radionuclides -- 7.4. Conclusions and future trends -- References -- Chapter 8: Porous silicon for targeting microorganisms: Detection and treatment -- 8.1. Introduction -- 8.2. Advancements in microorganism detection -- 8.2.1. Biosensing of bacteria within ``real samples��.

8.2.2. Sensitivity and signal enhancement -- 8.2.3. Monitoring bacterial behavior -- 8.3. PSi as an antibacterial agent -- 8.4. Conclusions and future trends -- References -- Chapter 9: Porous silicon biosensors for DNA sensing -- 9.1. Introduction -- 9.1.1. DNA sensing background -- 9.1.2. Important metrics for DNA sensing -- 9.1.2.1. Sensitivity and detection limit -- 9.1.2.2. Selectivity -- 9.1.2.3. Sensor response time -- 9.1.2.4. Limitations on sequence length -- 9.1.3. Other existing techniques for DNA detection and sequencing -- 9.2. PSi sensor preparation -- 9.2.1. Functionalization techniques -- 9.2.2. DNA attachment approaches: Direct infiltration of pre-synthesized DNA or in situ DNA synthesis -- 9.3. PSi DNA sensor structures, measurement techniques, and sensitivity -- 9.3.1. Optical transduction -- 9.3.1.1. Reflection spectroscopy -- Single layer interferometers -- Waveguides and other guided wave structures -- Bragg mirrors and microcavities -- Multilayer particles -- 9.3.1.2. Absorption spectroscopy -- 9.3.1.3. Photoluminescence (PL) and fluorescence -- Single-layer -- Microcavity -- 9.3.1.4. Surface enhanced Raman spectroscopy (SERS) -- 9.3.2. Electrical and electrochemical transduction -- 9.4. Corrosion of PSi DNA sensors -- 9.5. Effect of pore size on DNA infiltration and detection -- 9.6. Control of DNA surface density in nanoscale pores -- 9.7. Kinetics for real-time sensing -- 9.8. Conclusions and future trends -- References -- Chapter 10: Near-infrared imaging for in vivo assessment of porous silicon-based materials -- 10.1. Introduction -- 10.2. Fabrication of PSi-based composited materials with NIR PL -- 10.3. Assessment of the fate of PSi-based composited materials using in vivo imaging -- 10.4. Monitoring the physiological microenvironments of pathological tissues in vivo -- 10.5. Conclusions and future perspectives.

There are no comments for this item.

Log in to your account to post a comment.