Normal view MARC view ISBD view

Nanomaterials via single-source precursors : synthesis, processing and applications / edited by Andrew Barron, Aloysius Hepp, Allen Apblett.

Contributor(s): Barron, Andrew | Hepp, Aloysius | Apblett, Allen.
Material type: materialTypeLabelBookPublisher: Amsterdam : Elsevier, 2022Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780128203446; 0128203447.Subject(s): Nanostructured materials | Nanostructures | Nanomat�eriaux | Nanostructured materialsAdditional physical formats: No titleDDC classification: 620.115 Online resources: ScienceDirect
Contents:
3.3 Metal sulfides from dithiocarbamate complexes containing pyrrole moiety -- 3.3.1 Cobalt sulfide nanoparticles -- 3.3.2 Nickel sulfide nanoparticles -- 3.3.3 Nickel oxide nanoparticles -- 3.3.4 Copper sulfide nanoparticles -- 3.3.5 Mercury sulfide nanoparticles -- 3.3.6 Tin sulfide nanoparticles -- 3.4 Application of metal sulfides for the photodegradation of dyes -- 3.5 Conclusions -- Acknowledgment -- References -- Chapter 4 Theoretical studies of gas-phase decomposition of single-source precursors -- 4.1 Introduction -- 4.2 Theoretical and computational chemistry -- 4.2.1 Time-independent Sch�rdinger equation -- 4.2.2 Molecular mechanics methods -- 4.2.3 Semiempirical methods -- 4.2.4 Ab initio methods -- 4.2.5 Density functional theory -- 4.2.6 Hartree-Fock calculations -- 4.2.7 Hybrid methods -- 4.2.8 Basis sets -- 4.3 Computational methodologies -- 4.3.1 Software packages -- 4.3.2 Choice of exchange-correlation functionals -- 4.3.3 Choice of localized basis sets -- 4.3.4 Assessment of errors -- 4.4 Some recent computational studies on single-source precursors -- 4.4.1 DFT investigations M[SeSPPh2] and M2[SeSPPh2]2 (M = Li, Na, and K) -- 4.4.2 Gas-phase DFT of decomposition of zinc dichalcogenide single-source precursors -- 4.4.3 Cis/trans isomerism of Ni(II) thioselenophosphinates (Ni(SeSPMe2)2) -- 4.4.4 DFT calculations of a copper acetate-related complex -- 4.4.5 DFT studies on a Zn(II) dithiocarbamate imine adduct -- 4.4.6 DFT calculations of gas phase triethyl boron -- 4.5 Conclusions and outlook -- Acknowledgment -- References -- Section II Processing of single-source precursors into materials -- Chapter 5 Semiconductor clusters and their use as precursors to nanomaterials -- 5.1 Introduction -- 5.2 Synthesis and structure of clusters -- 5.3 Surface chemistry of clusters: Models for larger quantum dots.
5.4 Cation exchange studies to vary composition -- 5.5 Mechanisms of conversion -- 5.5.1 Monomer-driven pathways -- 5.5.2 Cluster assembly pathways -- 5.6 Conclusions and outlook -- References -- Chapter 6 Chalcogenoethers as convenient synthons for low-temperature solution-phase synthesis of metal chalcogenide nanoc ... -- 6.1 Introduction -- 6.2 Silylated chalcogenoethers as facile chalcogenide-transfer reagents -- 6.2.1 Binary metal chalcogenides -- 6.2.2 Ternary metal chalcogenides -- 6.3 Divergent reactivity of nonsilylated chalcogenoethers towards metal reagents -- 6.3.1 Formation of metal chalcogenide nanoparticles via reactive molecular intermediate -- 6.3.2 Formation of stable molecular complexes with low thermal decomposition temperature -- 6.4 Conclusions and future outlook -- References -- Chapter 7 Synthesis of lanthanide chalcogenide nanoparticles -- 7.1 Introduction -- 7.2 Lanthanide monochalcogenides: EuX -- 7.2.1 Nanoparticle synthesis of EuS -- 7.2.2 Nanoparticle synthesis of EuSe -- 7.2.3 Nanoparticle synthesis of anion alloys of EuS x Se 1 x -- 7.2.4 Band splitting in EuS and EuSe nanocrystals -- 7.3 Lanthanide dichalcogenide nanomaterials: LnX 2 -- 7.3.1 Nanoparticle synthesis of LnSe 2 -- 7.3.2 LnSe 2 phase stability -- 7.3.3 Nanosheet growth -- 7.4 Lanthanide oxychalcogenide materials -- 7.4.1 Precursor routes to Ln 2 O 2 S -- 7.4.2 Nanoparticle synthesis of Ln 2 O 2 S -- 7.4.3 Nanoparticles of lanthanide oxyselenides -- 7.5 Conclusions -- References -- Chapter 8 Organometallic single-source precursors to zinc oxide-based nanomaterials -- 8.1 Introduction -- 8.2 Reactivity of organozinc compounds -- 8.3 Organometallic single-source precursors for the preparation of zinc oxide nanostructures -- 8.3.1 Zinc-oxo clusters as potential SSPs of ZnO nanostructures.
8.3.2 Alkylzinc hydroxides and alkoxides as single-source precursors -- 8.3.2.1 Alkylzinc alkoxides as the most widely studied pre-designed SSPs of ZnO -- 8.3.2.2 Solid-state decomposition of alkylzinc alkoxides: Pre-designed heterocubanes and advanced mechanistic -- 8.3.2.3 Alkyl(alkoxy)zinc hydroxides as hybrid ZnO SSPs -- 8.3.2.4 Diversity of ZnO-based nanomaterials derived from alkylzinc hydroxides and alkoxides -- 8.4 Mixed-metal alkoxides as organometallic single-source precursors -- 8.5 Conclusions and final remarks -- Acknowledgment -- References -- Chapter 9 Nickel chalcogenide thin films and nanoparticles from molecular single-source precursors -- 9.1 Introduction -- 9.2 Xanthate complexes -- 9.3 Dichalcogenocarbamate complexes -- 9.4 Dichalcogenoimidophosphinate complexes -- 9.5 Chalcogenourea complexes -- 9.6 Dichalcogenophosphinate complexes -- 9.7 Dichalcogenophosphate complexes -- 9.8 Chalcogenocarboxylate complexes -- 9.9 Conclusions -- Appendix A: Useful information on relevant Ni x E y (E = S, Se, Te) phases -- Appendix B: SSP processing, properties and applications of NiO thin films -- Acknowledgments -- References -- Section III Single-source precursor-derived materials for energy conversion and catalysis -- Chapter 10 Group 15/16 single-source precursors for energy materials -- 10.1 Introduction -- 10.2 Synthesis and structures of group 15/16 single-source precursors -- 10.2.1 (R 2 M) 2 E (type I) with M:E molar ratio of 2:1 -- 10.2.2 R 2 MER' (type II) and R 3 M ( V) E (type III) with M:E molar ratio of 1:1 -- 10.2.3 RM(ER') 2 (type IV) with M:E molar ratio of 1:2 -- 10.2.4 M(ER') 3 (type V) with M:E molar ratio of 1:3 -- 10.2.5 Compounds containing chelating seleno-based ligands (types VI-IX) -- 10.3 Applications of group 15/16 single-source precursors in material synthesis -- 10.3.1 Solution-based material synthesis.
    average rating: 0.0 (0 votes)
No physical items for this record

3.3 Metal sulfides from dithiocarbamate complexes containing pyrrole moiety -- 3.3.1 Cobalt sulfide nanoparticles -- 3.3.2 Nickel sulfide nanoparticles -- 3.3.3 Nickel oxide nanoparticles -- 3.3.4 Copper sulfide nanoparticles -- 3.3.5 Mercury sulfide nanoparticles -- 3.3.6 Tin sulfide nanoparticles -- 3.4 Application of metal sulfides for the photodegradation of dyes -- 3.5 Conclusions -- Acknowledgment -- References -- Chapter 4 Theoretical studies of gas-phase decomposition of single-source precursors -- 4.1 Introduction -- 4.2 Theoretical and computational chemistry -- 4.2.1 Time-independent Sch�rdinger equation -- 4.2.2 Molecular mechanics methods -- 4.2.3 Semiempirical methods -- 4.2.4 Ab initio methods -- 4.2.5 Density functional theory -- 4.2.6 Hartree-Fock calculations -- 4.2.7 Hybrid methods -- 4.2.8 Basis sets -- 4.3 Computational methodologies -- 4.3.1 Software packages -- 4.3.2 Choice of exchange-correlation functionals -- 4.3.3 Choice of localized basis sets -- 4.3.4 Assessment of errors -- 4.4 Some recent computational studies on single-source precursors -- 4.4.1 DFT investigations M[SeSPPh2] and M2[SeSPPh2]2 (M = Li, Na, and K) -- 4.4.2 Gas-phase DFT of decomposition of zinc dichalcogenide single-source precursors -- 4.4.3 Cis/trans isomerism of Ni(II) thioselenophosphinates (Ni(SeSPMe2)2) -- 4.4.4 DFT calculations of a copper acetate-related complex -- 4.4.5 DFT studies on a Zn(II) dithiocarbamate imine adduct -- 4.4.6 DFT calculations of gas phase triethyl boron -- 4.5 Conclusions and outlook -- Acknowledgment -- References -- Section II Processing of single-source precursors into materials -- Chapter 5 Semiconductor clusters and their use as precursors to nanomaterials -- 5.1 Introduction -- 5.2 Synthesis and structure of clusters -- 5.3 Surface chemistry of clusters: Models for larger quantum dots.

5.4 Cation exchange studies to vary composition -- 5.5 Mechanisms of conversion -- 5.5.1 Monomer-driven pathways -- 5.5.2 Cluster assembly pathways -- 5.6 Conclusions and outlook -- References -- Chapter 6 Chalcogenoethers as convenient synthons for low-temperature solution-phase synthesis of metal chalcogenide nanoc ... -- 6.1 Introduction -- 6.2 Silylated chalcogenoethers as facile chalcogenide-transfer reagents -- 6.2.1 Binary metal chalcogenides -- 6.2.2 Ternary metal chalcogenides -- 6.3 Divergent reactivity of nonsilylated chalcogenoethers towards metal reagents -- 6.3.1 Formation of metal chalcogenide nanoparticles via reactive molecular intermediate -- 6.3.2 Formation of stable molecular complexes with low thermal decomposition temperature -- 6.4 Conclusions and future outlook -- References -- Chapter 7 Synthesis of lanthanide chalcogenide nanoparticles -- 7.1 Introduction -- 7.2 Lanthanide monochalcogenides: EuX -- 7.2.1 Nanoparticle synthesis of EuS -- 7.2.2 Nanoparticle synthesis of EuSe -- 7.2.3 Nanoparticle synthesis of anion alloys of EuS x Se 1 x -- 7.2.4 Band splitting in EuS and EuSe nanocrystals -- 7.3 Lanthanide dichalcogenide nanomaterials: LnX 2 -- 7.3.1 Nanoparticle synthesis of LnSe 2 -- 7.3.2 LnSe 2 phase stability -- 7.3.3 Nanosheet growth -- 7.4 Lanthanide oxychalcogenide materials -- 7.4.1 Precursor routes to Ln 2 O 2 S -- 7.4.2 Nanoparticle synthesis of Ln 2 O 2 S -- 7.4.3 Nanoparticles of lanthanide oxyselenides -- 7.5 Conclusions -- References -- Chapter 8 Organometallic single-source precursors to zinc oxide-based nanomaterials -- 8.1 Introduction -- 8.2 Reactivity of organozinc compounds -- 8.3 Organometallic single-source precursors for the preparation of zinc oxide nanostructures -- 8.3.1 Zinc-oxo clusters as potential SSPs of ZnO nanostructures.

8.3.2 Alkylzinc hydroxides and alkoxides as single-source precursors -- 8.3.2.1 Alkylzinc alkoxides as the most widely studied pre-designed SSPs of ZnO -- 8.3.2.2 Solid-state decomposition of alkylzinc alkoxides: Pre-designed heterocubanes and advanced mechanistic -- 8.3.2.3 Alkyl(alkoxy)zinc hydroxides as hybrid ZnO SSPs -- 8.3.2.4 Diversity of ZnO-based nanomaterials derived from alkylzinc hydroxides and alkoxides -- 8.4 Mixed-metal alkoxides as organometallic single-source precursors -- 8.5 Conclusions and final remarks -- Acknowledgment -- References -- Chapter 9 Nickel chalcogenide thin films and nanoparticles from molecular single-source precursors -- 9.1 Introduction -- 9.2 Xanthate complexes -- 9.3 Dichalcogenocarbamate complexes -- 9.4 Dichalcogenoimidophosphinate complexes -- 9.5 Chalcogenourea complexes -- 9.6 Dichalcogenophosphinate complexes -- 9.7 Dichalcogenophosphate complexes -- 9.8 Chalcogenocarboxylate complexes -- 9.9 Conclusions -- Appendix A: Useful information on relevant Ni x E y (E = S, Se, Te) phases -- Appendix B: SSP processing, properties and applications of NiO thin films -- Acknowledgments -- References -- Section III Single-source precursor-derived materials for energy conversion and catalysis -- Chapter 10 Group 15/16 single-source precursors for energy materials -- 10.1 Introduction -- 10.2 Synthesis and structures of group 15/16 single-source precursors -- 10.2.1 (R 2 M) 2 E (type I) with M:E molar ratio of 2:1 -- 10.2.2 R 2 MER' (type II) and R 3 M ( V) E (type III) with M:E molar ratio of 1:1 -- 10.2.3 RM(ER') 2 (type IV) with M:E molar ratio of 1:2 -- 10.2.4 M(ER') 3 (type V) with M:E molar ratio of 1:3 -- 10.2.5 Compounds containing chelating seleno-based ligands (types VI-IX) -- 10.3 Applications of group 15/16 single-source precursors in material synthesis -- 10.3.1 Solution-based material synthesis.

There are no comments for this item.

Log in to your account to post a comment.