Normal view MARC view ISBD view

Turbulence and instabilities in magnetised plasmas. Volume 2, Gyrokinetic theory and gyrofluid turbulence / Bruce Scott.

By: Scott, Bruce D [author.].
Contributor(s): Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 21: ; IOP series in plasma physics: ; IOP ebooks2021 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]Description: 1 online resource (various pagings) : illustrations (some color).Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750338554; 9780750338547.Other title: Gyrokinetic theory and gyrofluid turbulence.Subject(s): Plasma turbulence | Plasma instabilities | Plasma dynamics | Plasma physics | PlasmasAdditional physical formats: Print version:: No titleDDC classification: 530.44 Online resources: Click here to access online Also available in print.
Contents:
1. Prelude to volume two -- 1.1. Plasma, magnetised, parameters -- 1.2. Low frequency, flute mode ordering -- 1.3. Drifts, ExB flow, currents -- 1.4. Polarisation and quasineutrality -- 1.5. Turbulence -- 1.6. Turbulence in magnetised plasmas -- 1.7. Kinetic theory, turbulence, and MHD instabilities
2. Effects of the electron temperature -- 2.1. Introduction--electron temperature -- 2.2. Conservative effects -- 2.3. Dissipative effects -- 2.4. equations for magnetised plasma turbulence -- 2.5. Parameters, normalised equations, geometry -- 2.6. Energetics -- 2.7. Heat flux and kinetic shear Alfv�en waves -- 2.8. Drift Alfv�en turbulence -- 2.9. Mode structure -- 2.10. Dependence on parameters -- 2.11. Summary
3. Effects of the ion temperature -- 3.1. Introduction--ion temperature as independent -- 3.2. The Larmor radius and gyro averaging -- 3.3. Gyroaveraging versus gyroviscosity -- 3.4. Effects on cold ion dynamics -- 3.5. Ion temperature gradient (ITG) modes -- 3.6. Warm-ion toroidal drift Alfv�en model -- 3.7. Electromagnetic ITG turbulence in a hot plasma -- 3.8. Warm ion drift Alfv�en turbulence -- 3.9. On gyroviscosity -- 3.10. Summary
4. Lagrangian field theory and drifts -- 4.1. Low frequency drifts -- 4.2. Lagrangian field theory -- 4.3. Canonical representation -- 4.4. Lagrangian field theory in canonical form -- 4.5. Towards drifts -- 4.6. Quasineutrality -- 4.7. Interlude--Noether's theorem
5. Introduction to gyrokinetic theory -- 5.1. Ideas behind the gyrokinetic representation -- 5.2. Lagrangian basis of kinetic theory -- 5.3. The strategy of gyrokinetics -- 5.4. The drift-kinetic Lagrangian -- 5.5. The field variables as perturbations -- 5.6. The Lie transform -- 5.7. The gyroaverage -- 5.8. The gyrocentre phase space density and flow -- 5.9. The gyrokinetic field Lagrangian -- 5.10. Simplified limits
6. Phase space and energetic consistency -- 6.1. Summary of ideas -- 6.2. Basic structure of the model -- 6.3. The Euler-Lagrange equations for gyrocentres -- 6.4. Symmetry in gyrocentre dynamics -- 6.5. Application of Noether's theorem -- 6.6. Energy conservation -- 6.7. Momentum conservation -- 6.8. Gyrokinetic drifts -- 6.9. Gyrokinetic energetics -- 6.10. Simplified geometry and the form of the Jacobian
7. Gyrokinetic theory for local dynamics -- 7.1. Ideas behind delta-f gyrokinetics -- 7.2. Total-f Lagrangian and energetics -- 7.3. Linearised polarisation -- 7.4. The free energy -- 7.5. Sketch of the delta-f approach -- 7.6. Systematics of the delta-f equations -- 7.7. Delta-f energetics and correspondence -- 7.8. On consistency -- 7.9. The gyroaveraged magnetic field -- 7.10. What happened to momentum
8. Gyrokinetic treatment of waves -- 8.1. Introduction -- 8.2. Kinetic responses -- 8.3. Adiabatic drift acoustic wave -- 8.4. Kinetic shear Alfv�en wave -- 8.5. Drift-Alfv�en wave -- 8.6. Landau damping as thermal conduction -- 8.7. Kinetic resonance--Landau damping -- 8.8. Summary
9. Introduction to gyrofluid theory -- 9.1. Introduction -- 9.2. Heuristic gyrofluid 2D turbulence -- 9.3. Heuristic gyrofluid 3D turbulence -- 9.4. Gyrofluid systematics -- 9.5. Gyrofluid energetics -- 9.6. Summary
10. Gyrofluid equations for thermal dynamics -- 10.1. Introduction -- 10.2. The gyrofluid model with thermal responses -- 10.3. Collisions in general -- 10.4. Thermal gyrofluid energetics -- 10.5. Correspondence to the fluid model -- 10.6. On usefulness
11. Gyrofluid drift-Alfv�en turbulence -- 11.1. Introduction--gyrofluid turbulence -- 11.2. Electromagnetic gyrofluid equations -- 11.3. Energetics -- 11.4. ITG turbulence in a hot plasma -- 11.5. Drift Alfv�en turbulence in a warm plasma -- 11.6. Thermal anisotropy -- 11.7. Summary
12. Electron gyroscale turbulence -- 12.1. Introduction--the gyroscale -- 12.2. Responses below the ion gyroradius -- 12.3. Heuristic 2D electron gyroscale model -- 12.4. ITG and ETG isomorphism -- 12.5. Three-dimensional adiabatic ETG turbulence -- 12.6. The two-scale problem -- 12.7. Summary
13. Trapped-electron turbulence -- 13.1. Introduction--magnetic trapping chk -- 13.2. Gyrokinetic Hamiltonian in a system with symmetry -- 13.3. The toroidal precession drift -- 13.4. Single-centre drifts versus gyrokinetics -- 13.5. Trapped electrons as separate species in turbulence -- 13.6. On the kinetic details -- 13.7. Summary
14. Turbulence and test particles -- 14.1. Introduction--trace species -- 14.2. A two-dimensional trace species model -- 14.3. A three-dimensional three-species gyrofluid model -- 14.4. Summary
15. Current driven MHD instabilities -- 15.1. Introduction -- 15.2. Ideal MHD and the energy principle -- 15.3. Tearing modes and reconnection -- 15.4. Ballooning modes -- 15.5. Kink modes -- 15.6. Mode types not covered -- 15.7. Turbulence in a current channel -- 15.8. Summary
16. Gyrokinetic gauge transform for large scales -- 16.1. Background and introduction -- 16.2. Gyrokinetic theory as a gauge transform -- 16.3. Gauge transform to get the Lagrangian -- 16.4. Correspondence among the Lagrangians -- 16.5. The field Lagrangian -- 16.6. MHD and MHD equilibrium -- 16.7. Summary
17. Lie-Poisson bracket for gyrokinetics -- 17.1. Introduction -- 17.2. Poisson bracket formulation -- 17.3. Phase space Jacobian and the four-bracket form -- 17.4. Setting up a Lie-Poisson functional bracket -- 17.5. Lie-Poisson brackets for two-dimensional models -- 17.6. Casimir invariants.
Abstract: The second of a two-volume set, this book begins with a review of the concepts behind magnetised plasma turbulence as covered in Volume One. After covering the effects of temperature dynamics, especially heat flux inertia, the rest of the first half reviews classical field theory in the necessary language, then builds the gyrokinetic and gyrofluid theory in a systematic and self-consistent manner, with special emphasis on energetic consistency.
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 202111"--Title page verso.

Includes bibliographical references.

1. Prelude to volume two -- 1.1. Plasma, magnetised, parameters -- 1.2. Low frequency, flute mode ordering -- 1.3. Drifts, ExB flow, currents -- 1.4. Polarisation and quasineutrality -- 1.5. Turbulence -- 1.6. Turbulence in magnetised plasmas -- 1.7. Kinetic theory, turbulence, and MHD instabilities

2. Effects of the electron temperature -- 2.1. Introduction--electron temperature -- 2.2. Conservative effects -- 2.3. Dissipative effects -- 2.4. equations for magnetised plasma turbulence -- 2.5. Parameters, normalised equations, geometry -- 2.6. Energetics -- 2.7. Heat flux and kinetic shear Alfv�en waves -- 2.8. Drift Alfv�en turbulence -- 2.9. Mode structure -- 2.10. Dependence on parameters -- 2.11. Summary

3. Effects of the ion temperature -- 3.1. Introduction--ion temperature as independent -- 3.2. The Larmor radius and gyro averaging -- 3.3. Gyroaveraging versus gyroviscosity -- 3.4. Effects on cold ion dynamics -- 3.5. Ion temperature gradient (ITG) modes -- 3.6. Warm-ion toroidal drift Alfv�en model -- 3.7. Electromagnetic ITG turbulence in a hot plasma -- 3.8. Warm ion drift Alfv�en turbulence -- 3.9. On gyroviscosity -- 3.10. Summary

4. Lagrangian field theory and drifts -- 4.1. Low frequency drifts -- 4.2. Lagrangian field theory -- 4.3. Canonical representation -- 4.4. Lagrangian field theory in canonical form -- 4.5. Towards drifts -- 4.6. Quasineutrality -- 4.7. Interlude--Noether's theorem

5. Introduction to gyrokinetic theory -- 5.1. Ideas behind the gyrokinetic representation -- 5.2. Lagrangian basis of kinetic theory -- 5.3. The strategy of gyrokinetics -- 5.4. The drift-kinetic Lagrangian -- 5.5. The field variables as perturbations -- 5.6. The Lie transform -- 5.7. The gyroaverage -- 5.8. The gyrocentre phase space density and flow -- 5.9. The gyrokinetic field Lagrangian -- 5.10. Simplified limits

6. Phase space and energetic consistency -- 6.1. Summary of ideas -- 6.2. Basic structure of the model -- 6.3. The Euler-Lagrange equations for gyrocentres -- 6.4. Symmetry in gyrocentre dynamics -- 6.5. Application of Noether's theorem -- 6.6. Energy conservation -- 6.7. Momentum conservation -- 6.8. Gyrokinetic drifts -- 6.9. Gyrokinetic energetics -- 6.10. Simplified geometry and the form of the Jacobian

7. Gyrokinetic theory for local dynamics -- 7.1. Ideas behind delta-f gyrokinetics -- 7.2. Total-f Lagrangian and energetics -- 7.3. Linearised polarisation -- 7.4. The free energy -- 7.5. Sketch of the delta-f approach -- 7.6. Systematics of the delta-f equations -- 7.7. Delta-f energetics and correspondence -- 7.8. On consistency -- 7.9. The gyroaveraged magnetic field -- 7.10. What happened to momentum

8. Gyrokinetic treatment of waves -- 8.1. Introduction -- 8.2. Kinetic responses -- 8.3. Adiabatic drift acoustic wave -- 8.4. Kinetic shear Alfv�en wave -- 8.5. Drift-Alfv�en wave -- 8.6. Landau damping as thermal conduction -- 8.7. Kinetic resonance--Landau damping -- 8.8. Summary

9. Introduction to gyrofluid theory -- 9.1. Introduction -- 9.2. Heuristic gyrofluid 2D turbulence -- 9.3. Heuristic gyrofluid 3D turbulence -- 9.4. Gyrofluid systematics -- 9.5. Gyrofluid energetics -- 9.6. Summary

10. Gyrofluid equations for thermal dynamics -- 10.1. Introduction -- 10.2. The gyrofluid model with thermal responses -- 10.3. Collisions in general -- 10.4. Thermal gyrofluid energetics -- 10.5. Correspondence to the fluid model -- 10.6. On usefulness

11. Gyrofluid drift-Alfv�en turbulence -- 11.1. Introduction--gyrofluid turbulence -- 11.2. Electromagnetic gyrofluid equations -- 11.3. Energetics -- 11.4. ITG turbulence in a hot plasma -- 11.5. Drift Alfv�en turbulence in a warm plasma -- 11.6. Thermal anisotropy -- 11.7. Summary

12. Electron gyroscale turbulence -- 12.1. Introduction--the gyroscale -- 12.2. Responses below the ion gyroradius -- 12.3. Heuristic 2D electron gyroscale model -- 12.4. ITG and ETG isomorphism -- 12.5. Three-dimensional adiabatic ETG turbulence -- 12.6. The two-scale problem -- 12.7. Summary

13. Trapped-electron turbulence -- 13.1. Introduction--magnetic trapping chk -- 13.2. Gyrokinetic Hamiltonian in a system with symmetry -- 13.3. The toroidal precession drift -- 13.4. Single-centre drifts versus gyrokinetics -- 13.5. Trapped electrons as separate species in turbulence -- 13.6. On the kinetic details -- 13.7. Summary

14. Turbulence and test particles -- 14.1. Introduction--trace species -- 14.2. A two-dimensional trace species model -- 14.3. A three-dimensional three-species gyrofluid model -- 14.4. Summary

15. Current driven MHD instabilities -- 15.1. Introduction -- 15.2. Ideal MHD and the energy principle -- 15.3. Tearing modes and reconnection -- 15.4. Ballooning modes -- 15.5. Kink modes -- 15.6. Mode types not covered -- 15.7. Turbulence in a current channel -- 15.8. Summary

16. Gyrokinetic gauge transform for large scales -- 16.1. Background and introduction -- 16.2. Gyrokinetic theory as a gauge transform -- 16.3. Gauge transform to get the Lagrangian -- 16.4. Correspondence among the Lagrangians -- 16.5. The field Lagrangian -- 16.6. MHD and MHD equilibrium -- 16.7. Summary

17. Lie-Poisson bracket for gyrokinetics -- 17.1. Introduction -- 17.2. Poisson bracket formulation -- 17.3. Phase space Jacobian and the four-bracket form -- 17.4. Setting up a Lie-Poisson functional bracket -- 17.5. Lie-Poisson brackets for two-dimensional models -- 17.6. Casimir invariants.

The second of a two-volume set, this book begins with a review of the concepts behind magnetised plasma turbulence as covered in Volume One. After covering the effects of temperature dynamics, especially heat flux inertia, the rest of the first half reviews classical field theory in the necessary language, then builds the gyrokinetic and gyrofluid theory in a systematic and self-consistent manner, with special emphasis on energetic consistency.

Graduate students and researchers in plasma fusion.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Bruce Scott is a research plasma physicist having graduated with a Doctorate from the University of Maryland in 1985 and with the German Habilitation from the Heinrich-Heine-Universit�at D�usseldorf in 2001. He is a Fellow of the American Physical Society with membership since 1979. He has several tens of first author papers in peer reviewed journals in the field of theoretical plasma physics.

Title from PDF title page (viewed on December 6, 2021).

There are no comments for this item.

Log in to your account to post a comment.