Normal view MARC view ISBD view

Condensed matter physics : a modern perspective / Saurabh Basu.

By: Basu, Saurabh [author.].
Contributor(s): Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 22: ; IOP ebooks2022 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]Description: 1 online resource (various pagings) : illustrations (some color).Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750330312; 9780750330305.Subject(s): Condensed matter | Condensed matter physics (liquid state & solid state physics) | SCIENCE / Physics / Condensed MatterAdditional physical formats: Print version:: No titleDDC classification: 530.4/1 Online resources: Click here to access online Also available in print.
Contents:
1. Electron liquid -- 1.1. Introduction -- 1.2. Jellium model -- 1.3. Properties of the electron liquid -- 1.4. Determination of the Fermi surface : the de Haas-Van Alphen effect -- 1.5. Fermi liquid theory -- 1.6. Summary and outlook
2. Magnetic phenomena in solids -- 2.1. Introduction -- 2.2. Magnetic ordering : diamagnetism and paramagnetism -- 2.3. Magnetic properties of filled and partially filled shell materials -- 2.4. Ferromagnetism and antiferromagnetism -- 2.5. Mean field theory -- 2.6. Linear spin wave theory -- 2.7. Ising model of ferromagnetism : transfer matrix -- 2.8. Critical exponent and the universality class -- 2.9. Quantum antiferromagnet -- 2.10. Itinerant electron magnetism -- 2.11. Magnetic susceptibility : Kubo formula -- 2.12. Hubbard model : an introduction -- 2.13. Symmetries of the Hubbard model -- 2.14. Ferromagnetism in Hubbard model : Stoner criterion -- 2.15. Antiferromagnetism in the Hubbard model -- 2.16. Appendix -- 2.17. RS coupling -- 2.18. jj Coupling -- 2.19. Hund's rule
3. Transport in electronic systems -- 3.1. Introduction -- 3.2. Quantum Hall effect -- 3.3. Kubo formula and the Hall conductivity -- 3.4. Quantum Hall effect in graphene
4. Symmetry and topology -- 4.1. Introduction -- 4.2. Symmetries and topology -- 4.3. SSH model -- 4.4. The SSH Hamiltonian -- 4.5. Topology in 2D : graphene as a topological insulator -- 4.6. Quantum spin Hall insulator -- 4.7. Bulk-boundary correspondence -- 4.8. Spin Hall conductivity -- 4.9. Spin Hall effect
5. Green's functions -- 5.1. Introduction -- 5.2. Second quantization -- 5.3. Green's function -- 5.4. Retarded and advanced Green's functions -- 5.5. Self-energy : Dyson equation -- 5.6. Finite temperature Green's function -- 5.7. Summary and outlook
6. Superconductivity -- 6.1. Introduction -- 6.2. Magnetic phase diagram of superconductors -- 6.3. BCS theory -- 6.4. The variational calculation -- 6.5. Electromagnetic considerations -- 6.6. Ginzburg-Landau (GL) theory -- 6.7. Experimental determination of energy gap -- 6.8. The pseudogap phase
7. Superfluidity -- 7.1. Introduction -- 7.2. Bose-Einstein condensation -- 7.3. Superfluidity -- 7.4. Many-body physics with cold atomic systems -- 7.5. Strongly correlated systems -- 7.6. Various aspects of ultracold atoms in optical lattices -- 7.7. Summary and outlook -- 7.8. Appendix.
Abstract: This book connects modern experimental discoveries with theoretical and fundamental concepts. It introduces the interacting and non-interacting aspects of fermionic systems and the role of topology and symmetry in understanding material properties.
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 20221201"--Title page verso.

Includes bibliographical references.

1. Electron liquid -- 1.1. Introduction -- 1.2. Jellium model -- 1.3. Properties of the electron liquid -- 1.4. Determination of the Fermi surface : the de Haas-Van Alphen effect -- 1.5. Fermi liquid theory -- 1.6. Summary and outlook

2. Magnetic phenomena in solids -- 2.1. Introduction -- 2.2. Magnetic ordering : diamagnetism and paramagnetism -- 2.3. Magnetic properties of filled and partially filled shell materials -- 2.4. Ferromagnetism and antiferromagnetism -- 2.5. Mean field theory -- 2.6. Linear spin wave theory -- 2.7. Ising model of ferromagnetism : transfer matrix -- 2.8. Critical exponent and the universality class -- 2.9. Quantum antiferromagnet -- 2.10. Itinerant electron magnetism -- 2.11. Magnetic susceptibility : Kubo formula -- 2.12. Hubbard model : an introduction -- 2.13. Symmetries of the Hubbard model -- 2.14. Ferromagnetism in Hubbard model : Stoner criterion -- 2.15. Antiferromagnetism in the Hubbard model -- 2.16. Appendix -- 2.17. RS coupling -- 2.18. jj Coupling -- 2.19. Hund's rule

3. Transport in electronic systems -- 3.1. Introduction -- 3.2. Quantum Hall effect -- 3.3. Kubo formula and the Hall conductivity -- 3.4. Quantum Hall effect in graphene

4. Symmetry and topology -- 4.1. Introduction -- 4.2. Symmetries and topology -- 4.3. SSH model -- 4.4. The SSH Hamiltonian -- 4.5. Topology in 2D : graphene as a topological insulator -- 4.6. Quantum spin Hall insulator -- 4.7. Bulk-boundary correspondence -- 4.8. Spin Hall conductivity -- 4.9. Spin Hall effect

5. Green's functions -- 5.1. Introduction -- 5.2. Second quantization -- 5.3. Green's function -- 5.4. Retarded and advanced Green's functions -- 5.5. Self-energy : Dyson equation -- 5.6. Finite temperature Green's function -- 5.7. Summary and outlook

6. Superconductivity -- 6.1. Introduction -- 6.2. Magnetic phase diagram of superconductors -- 6.3. BCS theory -- 6.4. The variational calculation -- 6.5. Electromagnetic considerations -- 6.6. Ginzburg-Landau (GL) theory -- 6.7. Experimental determination of energy gap -- 6.8. The pseudogap phase

7. Superfluidity -- 7.1. Introduction -- 7.2. Bose-Einstein condensation -- 7.3. Superfluidity -- 7.4. Many-body physics with cold atomic systems -- 7.5. Strongly correlated systems -- 7.6. Various aspects of ultracold atoms in optical lattices -- 7.7. Summary and outlook -- 7.8. Appendix.

This book connects modern experimental discoveries with theoretical and fundamental concepts. It introduces the interacting and non-interacting aspects of fermionic systems and the role of topology and symmetry in understanding material properties.

High level undergraduate and postgraduate students. It is specifically aimed at students who have completed at least one introductory course on solid state physics.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Saurabh Basu is a Professor at the Indian Institute of Technology Guwahati.

Title from PDF title page (viewed on January 9, 2023).

There are no comments for this item.

Log in to your account to post a comment.