Normal view MARC view ISBD view

Lie Group Machine Learning / Fanzhang Li, Li Zhang, Zhao Zhang.

By: Li, Fanzhang [author.].
Contributor(s): Zhang, Li [author.] | Zhang, Zhao [author.].
Material type: materialTypeLabelBookPublisher: Berlin ; Boston : De Gruyter, [2018]Copyright date: ©2019Description: 1 online resource (XVI, 517 p.).Content type: text Media type: computer Carrier type: online resourceISBN: 9783110499506.Subject(s): COMPUTERS / Intelligence (AI) & SemanticsAdditional physical formats: No title; No titleOnline resources: Click here to access online | Click here to access online | Cover
Contents:
Frontmatter -- Preface -- Contents -- 1. Lie group machine learning model -- 2. Lie group subspace orbit generation learning -- 3. Symplectic group learning -- 4. Quantum group learning -- 5. Lie group fibre bundle learning -- 6. Lie group covering learning -- 7. Lie group deep structure learning -- 8. Lie group semi-supervised learning -- 9. Lie group kernel learning -- 10. Tensor learning -- 11. Frame bundle connection learning -- 12. Spectral estimation learning -- 13. Finsler geometric learning -- 14. Homology boundary learning -- 15. Category representation learning -- 16. Neuromorphic synergy learning -- 17. Appendix -- Authors -- Index
Title is part of eBook package:DG Plus eBook-Package 2019Title is part of eBook package:EBOOK PACKAGE COMPLETE DG 2019 EnglishTitle is part of eBook package:EBOOK PACKAGE COMPLETE 2018 EnglishTitle is part of eBook package:EBOOK PACKAGE COMPLETE 2018Title is part of eBook package:EBOOK PACKAGE Engineering, Computer Sciences 2018Summary: This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artifi cial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artifi cial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Li Fanzhang is professor at the Soochow University, China. He is director of network security engineering laboratory in Jiangsu Province and is also the director of the Soochow Institute of industrial large data. He published more than 200 papers, 7 academic monographs, and 4 textbooks. Zhang Li is professor at the School of Computer Science and Technology of the Soochow University. She published more than 100 papers in journals and conferences, and holds 23 patents. Zhang Zhao is currently an associate professor at the School of Computer Science and Technology of the Soochow University. He has authored and co-authored more than 60 technical papers.
    average rating: 0.0 (0 votes)
No physical items for this record

Frontmatter -- Preface -- Contents -- 1. Lie group machine learning model -- 2. Lie group subspace orbit generation learning -- 3. Symplectic group learning -- 4. Quantum group learning -- 5. Lie group fibre bundle learning -- 6. Lie group covering learning -- 7. Lie group deep structure learning -- 8. Lie group semi-supervised learning -- 9. Lie group kernel learning -- 10. Tensor learning -- 11. Frame bundle connection learning -- 12. Spectral estimation learning -- 13. Finsler geometric learning -- 14. Homology boundary learning -- 15. Category representation learning -- 16. Neuromorphic synergy learning -- 17. Appendix -- Authors -- Index

restricted access online access with authorization star

http://purl.org/coar/access_right/c_16ec

This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artifi cial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artifi cial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Li Fanzhang is professor at the Soochow University, China. He is director of network security engineering laboratory in Jiangsu Province and is also the director of the Soochow Institute of industrial large data. He published more than 200 papers, 7 academic monographs, and 4 textbooks. Zhang Li is professor at the School of Computer Science and Technology of the Soochow University. She published more than 100 papers in journals and conferences, and holds 23 patents. Zhang Zhao is currently an associate professor at the School of Computer Science and Technology of the Soochow University. He has authored and co-authored more than 60 technical papers.

Mode of access: Internet via World Wide Web.

In English.

Description based on online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2021)

There are no comments for this item.

Log in to your account to post a comment.