Reliability Physics and Engineering Time-To-Failure Modeling / [electronic resource] :
by J. W. McPherson.
- 2nd ed. 2013.
- XVI, 399 p. online resource.
Introduction -- Materials and Device Degradation -- From Material/Device Degradation to Time-To-Failure -- Time-To-Failure Modeling -- Gaussian Statistics - An Overview -- Time-To-Failure Statistics -- Failure Rate Modeling -- Accelerated Degradation -- Acceleration Factor Modeling -- Ramp-To-Failure Testing -- Time-To-Failure Models for Selected Failure Mechanisms in Integrated Circuits Breakdown (TDDB) -- Time-To-Failure Models for Selected Failure Mechanisms In Mechanical Engineering -- Conversion of Dynamical Stresses Into Effective Static Values -- Increasing the Reliability of Device/Product Designs -- Screening -- Heat Generation and Dissipation -- Sampling Plans and Confidence Intervals -- Appendix A: Useful Conversion Factors -- Appendix B: Useful Physical Constants -- Appendix C: Useful Rough Rules-Of-Thumb -- Appendix D: Useful Mathematical Expressions -- Appendix E: Useful Differentials and Definite Integrals -- Appendix F: Free-Energy -- Appendix G: t(1-(Sa(B/2,(Sp(B) Distribution Values -- Appendix H: (S
Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include: � Materials/Device Degradation � Degradation Kinetics � Time-To-Failure Modeling � Statistical Tools � Failure-Rate Modeling � Accelerated Testing � Ramp-To-Failure Testing � Important Failure Mechanisms for Integrated Circuits � Important Failure Mechanisms for Mechanical Components � Conversion of Dynamic Stresses into Static Equivalents � Small Design Changes Producing Major Reliability Improvements � Screening Methods � Heat Generation and Dissipation � Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Reliability Physics and Engineering can be a very useful resource for students, engineers, and materials scientists.
9783319001227
10.1007/978-3-319-00122-7 doi
Engineering. Energy. Statistics. Quality control. Reliability. Industrial safety. Electronics. Microelectronics. Engineering. Electronics and Microelectronics, Instrumentation. Quality Control, Reliability, Safety and Risk. Statistical Theory and Methods. Energy, general.