Adaptive signal processing : next generation solutions / edited by T�eulay Adali, Simon Haykin. - 1 PDF (xv, 407 pages) : illustrations. - Adaptive and learning systems for signal processing, communications and control series ; 55 . - Adaptive and learning systems for signal processing, communications, and control ; 55 .

Includes bibliographical references and index.

Preface -- Contributors -- Chapter 1 Complex-Valued Adaptive Signal Processing -- 1.1 Introduction -- -- 1.2 Preliminaries -- 1.3 Optimization in the Complex Domain -- 1.4 Widely Linear Adaptive Filtering -- 1.5 Nonlinear Adaptive Filtering with Multilayer Perceptrons -- 1.6 Complex Independent Component Analysis -- 1.7 Summary -- 1.8 Acknowledgment -- 1.9 Problems -- References -- Chapter 2 Robust Estimation Techniques for Complex-Valued Random Vectors -- 2.1 Introduction -- 2.2 Statistical Characterization of Complex Random Vectors -- 2.3 Complex Elliptically Symmetric (CES) Distributions -- 2.4 Tools to Compare Estimators -- 2.5 Scatter and Pseudo-Scatter Matrices -- 2.6 Array Processing Examples -- 2.7 MVDR Beamformers Based on M-Estimators -- 2.8 Robust ICA -- 2.9 Conclusion -- 2.10 Problems -- References -- Chapter 3 Turbo Equalization -- 3.1 Introduction -- 3.2 Context -- 3.3 Communication Chain -- 3.4 Turbo Decoder: Overview -- 3.5 Forward-Backward Algorithm -- 3.6 Simplified Algorithm: Interference Canceler -- 3.7 Capacity Analysis -- 3.8 Blind Turbo Equalization -- 3.9 Convergence -- 3.10 Multichannel and Multiuser Settings -- 3.11 Concluding Remarks -- 3.12 Problems -- References -- Chapter 4 Subspace Tracking for Signal Processing -- 4.1 Introduction -- 4.2 Linear Algebra Review -- 4.3 Observation Model and Problem Statement -- 4.4 Preliminary Example: Oja's Neuron -- 4.5 Subspace Tracking -- 4.6 Eigenvectors Tracking -- 4.7 Convergence and Performance Analysis Issues -- 4.8 Illustrative Examples -- 4.9 Concluding Remarks -- 4.10 Problems -- References -- Chapter 5 Particle Filtering -- 5.1 Introduction -- 5.2 Motivation for Use of Particle Filtering -- 5.3 The Basic Idea -- 5.4 The Choice of Proposal Distribution and Resampling -- 5.5 Some Particle Filtering Methods -- 5.6 Handling Constant Parameters -- 5.7 Rao-Blackwellization -- 5.8 Prediction -- 5.9 Smoothing -- 5.10 Convergence Issues -- 5.11 Computational Issues and Hardware Implementation -- 5.12 Acknowledgments. 5.13 Exercises -- References -- Chapter 6 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems -- 6.1 Introduction -- 6.2 Back-Propagation and Support Vector Machine-Learning Algorithms: Review -- 6.3 Supervised Training Framework of MLPs Using Nonlinear Sequential State Estimation -- 6.4 The Extended Kalman Filter -- 6.5 Experimental Comparison of the Extended Kalman Filtering Algorithm with the Back-Propagation and Support Vector Machine Learning Algorithms -- 6.6 Concluding Remarks -- 6.7 Problems -- References -- Chapter 7 Bandwidth Extension of Telephony Speech -- 7.1 Introduction -- 7.2 Organization of the Chapter -- 7.3 Nonmodel-Based Algorithms for Bandwidth Extension -- 7.4 Basics -- 7.5 Model-Based Algorithms for Bandwidth Extension -- 7.6 Evaluation of Bandwidth Extension Algorithms -- 7.7 Conclusion -- 7.8 Problems -- References -- Index.

Restricted to subscribers or individual electronic text purchasers.




Mode of access: World Wide Web

9780470575758 0470575751

10.1002/9780470575758 doi


Adaptive signal processing.


Electronic books.

TK5102.9 / .A288 2010eb

621.382/2