Fundamentals of silicon carbide technology : growth, characterization, devices and applications /
Fundamentals of SiC technology
Tsunenobu Kimoto, James A. Cooper.
- 1 PDF.
Includes bibliographical references and index.
About the Authors xi -- Preface xiii -- 1 Introduction 1 -- 1.1 Progress in Electronics 1 -- 1.2 Features and Brief History of Silicon Carbide 3 -- 1.2.1 Early History 3 -- 1.2.2 Innovations in SiC Crystal Growth 4 -- 1.2.3 Promise and Demonstration of SiC Power Devices 5 -- 1.3 Outline of This Book 6 -- References 6 -- 2 Physical Properties of Silicon Carbide 11 -- 2.1 Crystal Structure 11 -- 2.2 Electrical and Optical Properties 16 -- 2.2.1 Band Structure 16 -- 2.2.2 Optical Absorption Coefficient and Refractive Index 18 -- 2.2.3 Impurity Doping and Carrier Density 20 -- 2.2.4 Mobility 23 -- 2.2.5 Drift Velocity 27 -- 2.2.6 Breakdown Electric Field Strength 28 -- 2.3 Thermal and Mechanical Properties 30 -- 2.3.1 Thermal Conductivity 30 -- 2.3.2 Phonons 31 -- 2.3.3 Hardness and Mechanical Properties 32 -- 2.4 Summary 32 -- References 33 -- 3 Bulk Growth of Silicon Carbide 39 -- 3.1 Sublimation Growth 39 -- 3.1.1 Phase Diagram of Si-C 39 -- 3.1.2 Basic Phenomena Occurring during the Sublimation (Physical Vapor Transport) Method 39 -- 3.1.3 Modeling and Simulation 44 -- 3.2 Polytype Control in Sublimation Growth 46 -- 3.3 Defect Evolution and Reduction in Sublimation Growth 50 -- 3.3.1 Stacking Faults 50 -- 3.3.2 Micropipe Defects 51 -- 3.3.3 Threading Screw Dislocation 53 -- 3.3.4 Threading Edge Dislocation and Basal Plane Dislocation 54 -- 3.3.5 Defect Reduction 57 -- 3.4 Doping Control in Sublimation Growth 59 -- 3.4.1 Impurity Incorporation 59 -- 3.4.2 n-Type Doping 61 -- 3.4.3 p-Type Doping 61 -- 3.4.4 Semi-Insulating 62 -- 3.5 High-Temperature Chemical Vapor Deposition 64 -- 3.6 Solution Growth 66 -- 3.7 3C-SiC Wafers Grown by Chemical Vapor Deposition 67 -- 3.8 Wafering and Polishing 67 -- 3.9 Summary 69 -- References 69 -- 4 Epitaxial Growth of Silicon Carbide 75 -- 4.1 Fundamentals of SiC Homoepitaxy 75 -- 4.1.1 Polytype Replication in SiC Epitaxy 75 -- 4.1.2 Theoretical Model of SiC Homoepitaxy 78 -- 4.1.3 Growth Rate and Modeling 83 -- 4.1.4 Surface Morphology and Step Dynamics 87. 4.1.5 Reactor Design for SiC Epitaxy 89 -- 4.2 Doping Control in SiC CVD 90 -- 4.2.1 Background Doping 90 -- 4.2.2 n-Type Doping 91 -- 4.2.3 p-Type Doping 92 -- 4.3 Defects in SiC Epitaxial Layers 93 -- 4.3.1 Extended Defects 93 -- 4.3.2 Deep Levels 102 -- 4.4 Fast Homoepitaxy of SiC 105 -- 4.5 SiC Homoepitaxy on Non-standard Planes 107 -- 4.5.1 SiC Homoepitaxy on Nearly On-Axis 107 -- 4.5.2 SiC Homoepitaxy on Non-basal Planes 108 -- 4.5.3 Embedded Homoepitaxy of SiC 110 -- 4.6 SiC Homoepitaxy by Other Techniques 110 -- 4.7 Heteroepitaxy of 3C-SiC 111 -- 4.7.1 Heteroepitaxial Growth of 3C-SiC on Si 111 -- 4.7.2 Heteroepitaxial Growth of 3C-SiC on Hexagonal SiC 114 -- 4.8 Summary 114 -- References 115 -- 5 Characterization Techniques and Defects in Silicon Carbide 125 -- 5.1 Characterization Techniques 125 -- 5.1.1 Photoluminescence 126 -- 5.1.2 Raman Scattering 134 -- 5.1.3 Hall Effect and Capacitance-Voltage Measurements 136 -- 5.1.4 Carrier Lifetime Measurements 137 -- 5.1.5 Detection of Extended Defects 142 -- 5.1.6 Detection of Point Defects 150 -- 5.2 Extended Defects in SiC 155 -- 5.2.1 Major Extended Defects in SiC 155 -- 5.2.2 Bipolar Degradation 156 -- 5.2.3 Effects of Extended Defects on SiC Device Performance 161 -- 5.3 Point Defects in SiC 165 -- 5.3.1 Major Deep Levels in SiC 165 -- 5.3.2 Carrier Lifetime Killer 174 -- 5.4 Summary 179 -- References 180 -- 6 Device Processing of Silicon Carbide 189 -- 6.1 Ion Implantation 189 -- 6.1.1 Selective Doping Techniques 190 -- 6.1.2 Formation of an n-Type Region by Ion Implantation 191 -- 6.1.3 Formation of a p-Type Region by Ion Implantation 197 -- 6.1.4 Formation of a Semi-Insulating Region by Ion Implantation 200 -- 6.1.5 High-Temperature Annealing and Surface Roughening 201 -- 6.1.6 Defect Formation by Ion Implantation and Subsequent Annealing 203 -- 6.2 Etching 208 -- 6.2.1 Reactive Ion Etching 208 -- 6.2.2 High-Temperature Gas Etching 211 -- 6.2.3 Wet Etching 212 -- 6.3 Oxidation and Oxide/SiC Interface Characteristics 212. 6.3.1 Oxidation Rate 213 -- 6.3.2 Dielectric Properties of Oxides 215 -- 6.3.3 Structural and Physical Characterization of Thermal Oxides 217 -- 6.3.4 Electrical Characterization Techniques and Their Limitations 219 -- 6.3.5 Properties of the Oxide/SiC Interface and Their Improvement 234 -- 6.3.6 Interface Properties of Oxide/SiC on Various Faces 241 -- 6.3.7 Mobility-Limiting Factors 244 -- 6.4 Metallization 248 -- 6.4.1 Schottky Contacts on n-Type and p-Type SiC 249 -- 6.4.2 Ohmic Contacts to n-Type and p-Type SiC 255 -- 6.5 Summary 262 -- References 263 -- 7 Unipolar and Bipolar Power Diodes 277 -- 7.1 Introduction to SiC Power Switching Devices 277 -- 7.1.1 Blocking Voltage 277 -- 7.1.2 Unipolar Power Device Figure of Merit 280 -- 7.1.3 Bipolar Power Device Figure of Merit 281 -- 7.2 Schottky Barrier Diodes (SBDs) 282 -- 7.3 pn and pin Junction Diodes 286 -- 7.3.1 High-Level Injection and the Ambipolar Diffusion Equation 288 -- 7.3.2 Carrier Densities in the "i" Region 290 -- 7.3.3 Potential Drop across the "i" Region 292 -- 7.3.4 Current-Voltage Relationship 293 -- 7.4 Junction-Barrier Schottky (JBS) and Merged pin-Schottky (MPS) Diodes 296 -- References 300 -- 8 Unipolar Power Switching Devices 301 -- 8.1 Junction Field-Effect Transistors (JFETs) 301 -- 8.1.1 Pinch-Off Voltage 302 -- 8.1.2 Current-Voltage Relationship 303 -- 8.1.3 Saturation Drain Voltage 304 -- 8.1.4 Specific On-Resistance 305 -- 8.1.5 Enhancement-Mode and Depletion-Mode Operation 308 -- 8.1.6 Power JFET Implementations 311 -- 8.2 Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) 312 -- 8.2.1 Review of MOS Electrostatics 312 -- 8.2.2 MOS Electrostatics with Split Quasi-Fermi Levels 315 -- 8.2.3 MOSFET Current-Voltage Relationship 316 -- 8.2.4 Saturation Drain Voltage 319 -- 8.2.5 Specific On-Resistance 319 -- 8.2.6 Power MOSFET Implementations: DMOSFETs and UMOSFETs 320 -- 8.2.7 Advanced DMOSFET Designs 321 -- 8.2.8 Advanced UMOS Designs 324 -- 8.2.9 Threshold Voltage Control 326. 8.2.10 Inversion Layer Electron Mobility 329 -- 8.2.11 Oxide Reliability 339 -- 8.2.12 MOSFET Transient Response 342 -- References 350 -- 9 Bipolar Power Switching Devices 353 -- 9.1 Bipolar Junction Transistors (BJTs) 353 -- 9.1.1 Internal Currents 353 -- 9.1.2 Gain Parameters 355 -- 9.1.3 Terminal Currents 357 -- 9.1.4 Current-Voltage Relationship 359 -- 9.1.5 High-Current Effects in the Collector: Saturation and Quasi-Saturation 360 -- 9.1.6 High-Current Effects in the Base: the Rittner Effect 366 -- 9.1.7 High-Current Effects in the Collector: Second Breakdown and the Kirk Effect 368 -- 9.1.8 Common Emitter Current Gain: Temperature Dependence 370 -- 9.1.9 Common Emitter Current Gain: the Effect of Recombination 371 -- 9.1.10 Blocking Voltage 373 -- 9.2 Insulated-Gate Bipolar Transistors (IGBTs) 373 -- 9.2.1 Current-Voltage Relationship 374 -- 9.2.2 Blocking Voltage 384 -- 9.2.3 Switching Characteristics 385 -- 9.2.4 Temperature Dependence of Parameters 391 -- 9.3 Thyristors 392 -- 9.3.1 Forward Conducting Regime 393 -- 9.3.2 Forward Blocking Regime and Triggering 398 -- 9.3.3 The Turn-On Process 404 -- 9.3.4 dV/dt Triggering 406 -- 9.3.5 The dI/dt Limitation 407 -- 9.3.6 The Turn-Off Process 407 -- 9.3.7 Reverse-Blocking Mode 415 -- References 415 -- 10 Optimization and Comparison of Power Devices 417 -- 10.1 Blocking Voltage and Edge Terminations for SiC Power Devices 417 -- 10.1.1 Impact Ionization and Avalanche Breakdown 418 -- 10.1.2 Two-Dimensional Field Crowding and Junction Curvature 423 -- 10.1.3 Trench Edge Terminations 424 -- 10.1.4 Beveled Edge Terminations 425 -- 10.1.5 Junction Termination Extensions (JTEs) 427 -- 10.1.6 Floating Field-Ring (FFR) Terminations 429 -- 10.1.7 Multiple-Floating-Zone (MFZ) JTE and Space-Modulated (SM) JTE 432 -- 10.2 Optimum Design of Unipolar Drift Regions 435 -- 10.2.1 Vertical Drift Regions 435 -- 10.2.2 Lateral Drift Regions 438 -- 10.3 Comparison of Device Performance 440 -- References 443 -- 11 Applications of Silicon Carbide Devices in Power Systems 445. 11.1 Introduction to Power Electronic Systems 445 -- 11.2 Basic Power Converter Circuits 446 -- 11.2.1 Line-Frequency Phase-Controlled Rectifiers and Inverters 446 -- 11.2.2 Switch-Mode DC-DC Converters 450 -- 11.2.3 Switch-Mode Inverters 453 -- 11.3 Power Electronics for Motor Drives 458 -- 11.3.1 Introduction to Electric Motors and Motor Drives 458 -- 11.3.2 DC Motor Drives 459 -- 11.3.3 Induction Motor Drives 460 -- 11.3.4 Synchronous Motor Drives 465 -- 11.3.5 Motor Drives for Hybrid and Electric Vehicles 468 -- 11.4 Power Electronics for Renewable Energy 471 -- 11.4.1 Inverters for Photovoltaic Power Sources 471 -- 11.4.2 Converters for Wind Turbine Power Sources 472 -- 11.5 Power Electronics for Switch-Mode Power Supplies 476 -- 11.6 Performance Comparison of SiC and Silicon Power Devices 481 -- References 486 -- 12 Specialized Silicon Carbide Devices and Applications 487 -- 12.1 Microwave Devices 487 -- 12.1.1 Metal-Semiconductor Field-Effect Transistors (MESFETs) 487 -- 12.1.2 Static Induction Transistors (SITs) 489 -- 12.1.3 Impact Ionization Avalanche Transit-Time (IMPATT) Diodes 496 -- 12.2 High-Temperature Integrated Circuits 497 -- 12.3 Sensors 499 -- 12.3.1 Micro-Electro-Mechanical Sensors (MEMS) 499 -- 12.3.2 Gas Sensors 500 -- 12.3.3 Optical Detectors 504 -- References 509 -- Appendix A Incomplete Dopant Ionization in 4H-SiC 511 -- References 515 -- Appendix B Properties of the Hyperbolic Functions 517 -- Appendix C Major Physical Properties of Common SiC Polytypes 521 -- C.1 Properties 521 -- C.2 Temperature and/or Doping Dependence of Major Physical Properties 522 -- References 523 -- Index 525.
Restricted to subscribers or individual electronic text purchasers.