Intro -- Synthetic Engineering Materials and Nanotechnology -- Copyright -- Contents -- About the Author -- Preface -- Acknowledgments -- Condolences -- Chapter 1: Introduction, properties, and application of synthetic engineering materials -- 1.1. Introduction -- 1.1.1. Genesis of synthetic biology and synthetic engineering -- 1.1.2. Properties of synthetic materials -- 1.2. Techniques for acquiring synthetic engineering materials -- 1.2.1. Polymerization emulsion -- 1.2.2. Cross-linked polymer synthesis technique -- 1.2.3. Reinforcing-filler technique -- 1.2.4. Intercalation technique -- 1.2.5. In situ polymerization technique -- 1.2.6. Melt compounding technique -- 1.3. Methods of producing synthetic material -- 1.3.1. Thermo-mechanical methods -- 1.3.2. Chemical methods -- 1.3.3. Electrochemical methods -- 1.4. Application of materials -- 1.4.1. Uses of synthetic materials in medicine -- 1.4.2. Applications of synthetic materials in construction -- 1.5. Conclusion -- References -- Chapter 2: Synthetic polymers -- 2.1. Introduction -- 2.1.1. Fundamental structure of polymer -- 2.1.2. Physical characteristics of synthetic polymers -- 2.1.3. Structure of polymers -- 2.1.4. Classification of synthetic polymers -- 2.1.5. Modes of polymerization -- 2.1.5.1. Additional polymerization -- 2.1.5.2. Condensation polymerization -- 2.1.6. Degree of polymerization -- 2.1.7. Types of polymers -- 2.1.7.1. Elastomers -- 2.1.7.2. Plastics -- 2.1.7.3. Fibers -- 2.2. Methods of synthesizing the polymers -- 2.2.1. Free-radical polymerization -- 2.2.2. Condensation polymerization -- 2.2.3. Graft polymerization -- 2.2.4. Photo-polymerization -- 2.3. Techniques of synthesizing the polymers -- 2.3.1. Ring-opening polymerization (ROP) -- 2.3.2. Polymer bioconjugates -- 2.3.3. Controlled/living radical polymerization -- 2.4. Different applications of synthetic polymers. 2.5. Conclusion -- References -- Chapter 3: Synthetic alloys -- 3.1. Introduction -- 3.1.1. Types of synthetic alloys -- 3.1.2. Difference between substitutional and interstitial alloys -- 3.1.3. Purpose of the alloys -- 3.1.4. Properties of synthetic alloys metals -- 3.2. Methods and techniques for obtaining synthetic alloys -- 3.2.1. Fusion method -- 3.2.2. Reduction method -- 3.2.3. Electrodeposition method -- 3.2.4. Powder metallurgy or compression methods -- 3.3. Application of synthetic alloy -- 3.4. Conclusion -- References -- Chapter 4: Synthetic rubber -- 4.1. Introduction -- 4.1.1. Natural rubber vs synthetic rubber -- 4.1.2. Drawbacks of natural rubber -- 4.1.3. Theoretical context -- 4.1.3.1. Elastomers -- 4.1.3.2. Vulcanization -- 4.1.4. Mechanical characteristics of rubbers -- 4.1.5. Chemical processing of natural and synthetic rubber -- 4.1.5.1. Example of synthetic rubber -- 4.2. Methods and techniques for producing synthetic rubber -- 4.2.1. Polymerization process -- 4.2.2. Compounding -- 4.2.3. Mixing -- 4.2.4. Latex processing -- 4.2.5. Milling machine process -- 4.2.6. Calendering -- 4.2.7. Mixing machine process -- 4.3. Applications of synthetic rubber -- 4.4. Conclusion -- References -- Chapter 5: Synthetic foam -- 5.1. Introduction -- 5.1.1. Types of synthetic foams -- 5.2. Methods and techniques -- 5.2.1. Foaming process -- 5.2.1.1. Cell formation -- 5.2.1.2. Cell growth -- 5.2.1.3. Cell stabilization -- 5.3. Methods to produce synthetic foam -- 5.3.1. Mechanical foaming -- 5.3.2. Physical foaming -- 5.3.3. Chemical foaming -- 5.4. Techniques of processing synthetic foam -- 5.4.1. Extrusion molding of foam -- 5.4.2. Injection molding of foam -- 5.5. Applications of synthetic foam -- 5.6. Conclusion -- References -- Chapter 6: Synthetic biosources -- 6.1. Introduction -- 6.1.1. Classification of bioresources. 6.1.2. Biomass and its classification -- 6.1.3. Glycogen metabolism -- 6.2. Methods of synthetic biosources -- 6.2.1. Production of biofuels via Fischer Tropsch (FT) synthesis: Biomass-to-liquids -- 6.2.2. Fluidized bed gasification -- 6.2.3. Entrained flow gasification -- 6.2.4. Polygeneration -- 6.2.5. Biorefinery -- 6.3. Technique to produce synthetic biofuels -- 6.3.1. Filtration combustion experiments -- 6.4. Applications of synthetic biosource -- 6.4.1. Delivering economic, renewable BioAcrylic -- 6.4.2. Making ``green chemicals�� from agricultural waste -- 6.4.3. Developing a suite of biobased products and services -- 6.4.4. Engineering low-cost sugars for petroleum substitute -- 6.4.5. Creating economic advantage for a commonly used chemical -- 6.4.6. Increasing efficiency in bioprocessing of pharmaceuticals -- 6.5. Conclusion -- References -- Chapter 7: Synthetic oil -- 7.1. Introduction -- 7.1.1. Advantages of synthetic oil -- 7.2. Methods and techniques of synthesizing synthetic oil -- 7.2.1. Thermochemical cycles -- 7.2.2. Gas-to-liquid (GTL) -- 7.2.3. Direct coal liquefaction method -- 7.2.4. Electrochemical reduction method -- 7.3. Applications of synthetic oil -- 7.3.1. Enhanced engine performance and wellbeing -- 7.3.2. Clean burning of transportation to protect environment -- 7.3.3. Chemical engineering -- 7.3.4. Generating electricity -- 7.4. Conclusion -- References -- Chapter 8: Introduction, properties, and application of synthetic engineering nanomaterials -- 8.1. Introduction -- 8.2. Properties of nanomaterials -- 8.2.1. Physical properties -- 8.2.2. Magnetic properties -- 8.2.3. Chemical properties -- 8.2.3.1. Size effects in chemical process -- 8.2.3.2. Oxidation processes in nanomediums -- 8.3. Methods of synthesizing engineering nanomaterials -- 8.3.1. Mechanochemical processing (MCP) method -- 8.3.2. Laser ablation. 8.3.3. Chemical reduction method -- 8.4. Techniques of synthesizing engineering nanomaterials -- 8.4.1. Top-down approach -- 8.4.1.1. Etching -- 8.4.1.2. Electrospinning -- 8.4.2. Bottom-up techniques -- 8.4.2.1. Chemical vapor deposition -- 8.5. Applications of synthetic engineering nanomaterials -- 8.5.1. Ecological remediation -- 8.5.2. Pharmaceutical industry -- 8.5.3. Manufacturing electronic devices -- 8.5.4. Energy harvesting -- 8.6. Conclusion -- References -- Chapter 9: Ceramic nanomaterials -- 9.1. Introduction -- 9.2. Methods of synthesizing nanoceramics -- 9.2.1. Sol-gel method -- 9.2.2. Self-propagating high-temperature synthesis (SHS) method -- 9.2.3. Spray pyrolysis -- 9.2.4. Chemical vapor condensation (CVC) method -- 9.3. Techniques of synthesizing nanoceramics -- 9.3.1. Solution combustion technique -- 9.3.2. Alginate template technique -- 9.3.3. Microwave-assisted technique -- 9.3.4. Liquid-liquid Interface technique -- 9.4. Application of nanoceramics -- 9.5. Conclusion -- References -- Chapter 10: Carbon-based nanomaterials -- 10.1. Introduction -- 10.2. Methods of synthesizing carbon-based nanomaterials -- 10.2.1. Chemical vapor deposition (CVD) -- 10.2.2. Carbon arc discharge -- 10.2.3. Laser ablation method -- 10.2.4. Single- or double-emulsion method -- 10.2.5. Emulsion-solvent evaporation method -- 10.3. Techniques of synthesizing carbon-based nanomaterial -- 10.3.1. Transmission electron microscopy -- 10.3.2. Atomic force microscopy (AFM) -- 10.3.3. Scanning electron microscopy -- 10.3.4. Flame synthesis -- 10.4. Application of carbon-based nanomaterials -- 10.5. Conclusion -- References -- Chapter 11: Metal oxide nanomaterials -- 11.1. Introduction -- 11.2. Properties of nanoparticles -- 11.2.1. General properties -- 11.2.2. Optical properties -- 11.2.3. Mechanical properties -- 11.2.4. Magnetic properties. 11.3. Methods of synthesis of metal oxide -- 11.3.1. Bottom-up -- 11.3.2. Hydrothermal/solvothermal approach -- 11.3.3. Sol-gel approach -- 11.4. Techniques for the synthesis of metal oxides -- 11.4.1. Induction thermal plasma -- 11.4.2. Electrospinning -- 11.4.3. Solution combustion technique -- 11.5. Application of metal oxide nanomaterials -- 11.5.1. Catalysis -- 11.5.2. Sensing -- 11.5.3. Gas sensors -- 11.5.4. Batteries -- 11.6. Conclusions -- References -- Chapter 12: Composite nanomaterials -- 12.1. Introduction -- 12.2. Methods of producing composite nanomaterials -- 12.2.1. Biological method -- 12.2.2. Chemical methods -- 12.2.3. Combustion method -- 12.2.4. Mechanochemical synthesis -- 12.3. Techniques -- 12.3.1. Microwave induced technique -- 12.3.2. Solution evaporation technique -- 12.4. Properties of composite nanomaterials -- 12.5. Conclusion -- References -- Chapter 13: Membrane-derived nanomaterials -- 13.1. Introduction -- 13.2. Significance of membrane-derived nanoparticle -- 13.3. Methods -- 13.3.1. Biological method -- 13.3.1.1. Extraction of membrane -- 13.3.1.2. Core nanoparticles -- 13.3.1.3. Process of fusion -- 13.3.2. Chemical methods -- 13.4. Techniques -- 13.4.1. Electrospinning -- 13.4.2. Combustion synthesis -- 13.5. Properties -- 13.5.1. Physicochemical properties -- 13.5.2. Biological properties -- 13.6. Conclusions -- References -- Chapter 14: Nanomaterial-based coatings -- 14.1. Introduction -- 14.2. Methods of manufacturing nanomaterial-based coatings -- 14.2.1. Sol-gel method -- 14.2.2. Cold spray method -- 14.2.3. Chemical vapor deposition method -- 14.2.4. Supercritical antisolvent (SAS) process -- 14.2.5. Layer by layer method -- 14.2.6. Emulsion polymerization -- 14.2.7. Nano container-based synthesis -- 14.3. Techniques of manufacturing nanomaterial-based coatings.
Synthetic Engineering Materials and Nanotechnology covers the latest research and developments of synthetic processes, materials, applications and technologies. In addition, innovations in synthetic engineering materials techniques are analyzed. Each chapter addresses key concepts, properties and applications of important categories of synthetic materials, including metals alloys, polymers, composites, rubbers, oils and foams. Advances in nanomaterials produced by synthetic engineering methods are also considered, including ceramic, carbon, metal oxide, composite, and membrane-derived nanomaterials. The primary synthetic engineering materials techniques covered include thermo-mechanical, chemical, physiochemical, electrochemical, bottom-up, hybrid and biological methods. This book is suitable for early career researchers in academia and R & D in areas such as materials science and engineering, mechanical engineering and chemical engineering.