Conditionals, Information, and Inference [electronic resource] : International Workshop, WCII 2002, Hagen, Germany, May 13-15, 2002, Revised Selected Papers / edited by Gabriele Kern-Isberner, Wilhelm Rödder, Friedhelm Kulmann.
Contributor(s): Kern-Isberner, Gabriele [editor.] | Rödder, Wilhelm [editor.] | Kulmann, Friedhelm [editor.] | SpringerLink (Online service).
Material type: BookSeries: Lecture Notes in Artificial Intelligence: 3301Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005Edition: 1st ed. 2005.Description: XII, 219 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783540322351.Subject(s): Artificial intelligence | Machine theory | Artificial Intelligence | Formal Languages and Automata TheoryAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 006.3 Online resources: Click here to access onlineInvited Papers -- What Is at Stake in the Controversy over Conditionals -- Reflections on Logic and Probability in the Context of Conditionals -- Acceptance, Conditionals, and Belief Revision -- Regular Papers -- Getting the Point of Conditionals: An Argumentative Approach to the Psychological Interpretation of Conditional Premises -- Projective Default Epistemology -- On the Logic of Iterated Non-prioritised Revision -- Assertions, Conditionals, and Defaults -- A Maple Package for Conditional Event Algebras -- Conditional Independences in Gaussian Vectors and Rings of Polynomials -- Looking at Probabilistic Conditionals from an Institutional Point of View -- There Is a Reason for Everything (Probably): On the Application of Maxent to Induction -- Completing Incomplete Bayesian Networks.
Conditionals are fascinating and versatile objects of knowledge representation. On the one hand, they may express rules in a very general sense, representing, for example, plausible relationships, physical laws, and social norms. On the other hand, as default rules or general implications, they constitute a basic tool for reasoning, even in the presence of uncertainty. In this sense, conditionals are intimately connected both to information and inference. Due to their non-Boolean nature, however, conditionals are not easily dealt with. They are not simply true or false - rather, a conditional "if A then B" provides a context, A, for B to be plausible (or true) and must not be confused with "A entails B" or with the material implication "not A or B." This ill- trates how conditionals represent information, understood in its strict sense as reduction of uncertainty. To learn that, in the context A, the proposition B is plausible, may reduce uncertainty about B and hence is information. The ab- ity to predict such conditioned propositions is knowledge and as such (earlier) acquired information. The ?rst work on conditional objects dates back to Boole in the 19th c- tury, and the interest in conditionals was revived in the second half of the 20th century, when the emerging Arti?cial Intelligence made claims for appropriate formaltoolstohandle"generalizedrules."Sincethen,conditionalshavebeenthe topic of countless publications, each emphasizing their relevance for knowledge representation, plausible reasoning, nonmonotonic inference, and belief revision.
There are no comments for this item.