Normal view MARC view ISBD view

Visual Knowledge Discovery and Machine Learning [electronic resource] / by Boris Kovalerchuk.

By: Kovalerchuk, Boris [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Intelligent Systems Reference Library: 144Publisher: Cham : Springer International Publishing : Imprint: Springer, 2018Edition: 1st ed. 2018.Description: XXI, 317 p. 274 illus., 263 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319730400.Subject(s): Computational intelligence | Artificial intelligence | Computational Intelligence | Artificial IntelligenceAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 006.3 Online resources: Click here to access online
Contents:
Motivation, Problems and Approach -- General Line Coordinates (GLC) -- Theoretical and Mathematical Basis of GLC -- Adjustable GLCs for decreasing occlusion and pattern simplification -- GLC Case Studies -- Discovering visual features and shape perception capabilities in GLC -- Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L -- Knowledge Discovery and Machine Learning for Investment Strategy with CPC.
In: Springer Nature eBookSummary: This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science.
    average rating: 0.0 (0 votes)
No physical items for this record

Motivation, Problems and Approach -- General Line Coordinates (GLC) -- Theoretical and Mathematical Basis of GLC -- Adjustable GLCs for decreasing occlusion and pattern simplification -- GLC Case Studies -- Discovering visual features and shape perception capabilities in GLC -- Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L -- Knowledge Discovery and Machine Learning for Investment Strategy with CPC.

This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science.

There are no comments for this item.

Log in to your account to post a comment.