Normal view MARC view ISBD view

Surface modified nanomaterials for applications in catalysis : fundamentals, methods and applications / edited by Manoj B. Gawande, Chaudhery Mustansar Hussain, Yusuke Yamauchi.

Contributor(s): Gawande, Manoj B | Hussain, Chaudhery Mustansar | Yamauchi, Yusuke.
Material type: materialTypeLabelBookPublisher: Amsterdam, Netherlands : Elsevier, 2022Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780128236024; 0128236027.Subject(s): Catalysts | Nanostructured materials | Catalysts | Nanostructured materialsAdditional physical formats: No title; Print version:: Surface modified nanomaterials for applications in catalysisDDC classification: 660.2995 Online resources: ScienceDirect
Contents:
Front Cover -- SURFACE MODIFIED NANOMATERIALS FOR APPLICATIONS IN CATALYSIS -- SURFACE MODIFIED NANOMATERIALS FOR APPLICATIONS IN CATALYSIS: FUNDAMENTALS, METHODS AND APPLICATIONS -- Copyright -- CONTENTS -- Contributors -- About the editors -- Introduction to surface-modified nanomaterials -- REFERENCES -- 1 -- New frontiers for heterogeneous catalysis: surface modification of nanomaterials -- 1. Introduction: catalysts, nanomaterials (NMs) and nanocatalysts (NCs) -- 2. Synthetic strategies of NCs -- 3. Need for surface functionalization -- 4. Types of NMs and their functionalization procedures -- 5. Selective applications of surface-functionalized NCs -- 6. Characterization of surface-functionalized NCs -- 7. Topics to be covered in this book -- 8. Summary: present status and future direction -- Abbreviations -- References -- 2 -- Fundamental concepts on surface chemistry for nanoparticle modifications -- 1. Introduction -- 1.1 Steric stabilization -- 1.2 Use of silica nanoparticles for the stabilization of nanoparticles -- 1.3 Carbon materials in the stabilization of nanoparticles -- 1.4 Chemical methods of nanoparticle synthesis using various functional surface -- 2. Esterification reaction method -- 3. Phosphate ester method -- 4. In situ modification method -- 5. Conclusions -- References -- 3 -- Synthesis of surface-modified nanomaterials -- 1. Introduction -- 2. Nanomaterials surface chemistry and Zeta potential -- 3. Surface modification of catalytic nanoparticles by thermal and plasma treatment -- 4. Silane chemical treatment -- 5. Ligand immobilization techniques to modify catalytic nanoparticles -- 6. Surface modification via single-atom anchoring -- 7. Industrial-scale utilization of synthetic methods to prepare surface-modified nanomaterials -- 8. Challenges, future perspective, and conclusions -- References.
4 -- Surface modification of nano-based catalytic materials for enhanced water treatment applications -- 1. Nanomaterials for water treatment -- 2. Advancement on modification of nanomaterials -- 3. Examples of nanoscale modified catalytic materials -- 3.1 TiO2-based materials -- 3.2 Carbon-based materials for water treatment -- 3.3 NZVI-based materials for water treatment -- 3.3.1 Modification needs and routes of modification of ZVI -- 3.3.2 Surface modifiers -- 3.3.3 Bimetallic particles -- 3.3.4 Sulfidation -- 3.3.5 NZVI supported on various materials -- 3.3.6 Emulsification -- 3.3.7 Combined technologies -- 3.3.8 Examples of water-treatment enhancement of NZVI-based materials -- 4. Conclusions -- Acknowledgment -- References -- 5 -- Surface-modified nanomaterials-based catalytic materials for water purification, hydrocarbon production, and po ... -- 1. Introduction -- 2. Nanocatalyst materials -- 3. Wastewater treatment -- 3.1 Zero-valent metal nanocatalysts -- 3.2 Metal oxide nanocatalysts -- 3.2.1 TiO2 -- 3.2.2 Fe2O3 -- 3.2.3 ZnO -- 3.3 Carbon-based nanocatalysts -- 3.3.1 Functionalized graphene-based nanocatalysts -- 3.3.2 Functionalized CNT-based nanocatalysts -- 3.4 Polymer-based nanocatalysts -- 3.5 Miscellaneous nanocatalysts -- 4. Nanocatalysts in hydrocarbon production -- 4.1 Biomass to hydrocarbon -- 4.1.1 Pyrolysis -- 4.1.2 Liquefaction -- 4.1.3 Gasification -- 4.2 CO2 to methanol and other hydrocarbons -- 5. Recent advancement and real-time utilization of nanocatalysts -- 6. Conclusion -- Acknowledgments -- References -- 6 -- Surface-modified nanomaterial-based catalytic materials for the production of liquid fuels -- 1. Introduction -- 2. Surface modified nanomaterials (SMNs) for biomass conversion to liquid fuels -- 2.1 Production of 1, 2-propylene glycol and ethylene glycol -- 2.2 Production of 1,4-butanediol.
2.3 Production of furfural alcohol and related liquid fuels -- 2.4 Production of 5-hydroxymethylfurfural and related liquid derivatives -- 2.5 Production of biodiesel -- 2.6 Production of liquid hydrocarbons -- 3. Surface-modified nanomaterials for the transformation of carbon dioxide to liquid fuels -- 3.1 Reduction of CO2 to methanol -- 3.2 Reduction of CO2 to ethanol -- 3.3 Reduction of CO2 to propanol -- 3.4 Reduction of CO2 to formic acid -- 4. Future perspectives and conclusion -- Acknowledgments -- References -- 7 -- SMN-based catalytic membranes for environmental catalysis -- 1. Introduction -- 2. Challenges in SMNs and catalytic MRs -- 3. Types of catalytic membrane reactors (MRs) -- 3.1 Inorganic (silica/metallic) MRs -- 3.2 Organic (polymeric) MRs -- 4. Basic overview of polymeric MRs -- 5. Incorporation of SMNs into polymeric membranes -- 5.1 Methods of SMNs incorporation into polymeric MRs -- 5.1.1 Irradiation-based modifications -- 5.1.1.1 Plasma treatment -- 5.1.1.2 UV-irradiation -- 5.1.2 Grafting-based modifications -- 5.1.2.1 Chemical/electrochemical initiated grafting -- 5.1.2.2 Photoirradiation-induced grafting -- 5.1.2.3 High energy radiation (plasma) induced grafting -- 5.1.3 Surface coating-based modifications -- 5.1.3.1 Gas-phase coatings -- 5.1.3.2 Wet-phase coatings -- 5.2 Characterization methods of SMNs based polymer membranes -- 5.2.1 Advanced microscopic techniques -- 5.2.1.1 Cryo-transmission electron microscopy (cryo-TEM/cryo-EM) -- 5.2.1.2 Atomic force microscopy (AFM) -- 5.2.1.3 Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) -- 5.2.2 X-ray spectroscopic techniques -- 5.2.2.1 X-ray diffraction (XRD) -- 5.2.2.2 X-ray photon correlation spectroscopy (XPS or XPCS) -- 6. SMNs based polymeric membrane-assisted catalysis -- 6.1 Pervaporation for esterification -- 6.2 Hydrogenation.
6.3 CO2 sequestration: hydration of CO2 -- 7. Summary and future perspectives -- Abbreviations -- References -- 8 -- Semiconductor catalysts based on surface-modified nanomaterials (SMNs) for sensors -- 1. Introduction -- 2. Zero-dimensional (0D) nanomaterials -- 2.1 Quantum dots -- 2.2 Core-shell nanoparticles, hollow spheres, and nanocluster -- 3. One-dimensional (1D) nanomaterials -- 3.1 Synthesis of 1D nanostructures and sensor fabrication -- 3.2 1D NMs-based sensors -- 4. Two-dimensional (2D) nanomaterials -- 5. Tree-dimensional (3D) nanomaterials -- 6. Conclusion -- Acknowledgments -- List of resources -- References -- 9 -- Surface-modified carbonaceous nanomaterials for CO2 hydrogenation and fixation -- 1. Introduction -- 1.1 Surface modified carbonaceous nanomaterials -- 2. Basic concepts of CO2 sequestration (hydrogenation and fixation) -- 3. Heterogeneous catalyst in CO2 hydrogenation -- 3.1 CO2 hydrogenation to hydrocarbons -- 3.2 CO2 hydrogenation to alcohols -- 3.3 CO2 hydrogenation to value-added products -- 4. Heterogeneous catalyst in CO2 fixation -- 4.1 CO2 fixation to cyclic carbonates -- 4.2 CO2 fixation to cyclic carbamates -- 4.3 CO2 fixation to other value-added products -- 5. Summary and perspectives -- References -- 10 -- Surface-modified nanomaterials for synthesis of pharmaceuticals -- 1. Introduction -- 2. Noble metal-based nanoparticles for the synthesis of pharmaceuticals -- 3. Nonnoble metal-based nanoparticles for the synthesis of pharmaceuticals -- 4. Conclusions -- References -- 11 -- Surface-modified nanomaterial-based catalytic materials for modern industry applications -- 1. Introduction -- 2. Scope of the book chapter -- 3. Active role of surface-modified nanomaterials in industry -- 3.1 Silica-modified nanomaterials -- 3.2 Graphene modified nanomaterials -- 3.3 Magnetic surface-modified nanomaterials.
3.4 TiO2 surface-modified nanomaterials -- 4. Conclusion -- References -- 12 -- Assessment of health, safety, and economics of surface-modified nanomaterials for catalytic applications: a review -- 1. Introduction -- 1.1 NMs categories and nomenclature -- 1.2 Synthesis of SNMs with the application as catalyst -- 1.3 Different types of SNMs -- 1.3.1 Carbonaceous SNMs -- 1.4 Carbon nanotubes -- 1.5 Fullerene (nC60) -- 1.6 Graphene-based nanomaterials -- 1.6.1 Metal and metal oxides -- 1.7 Other nanomaterials -- 1.7.1 Quantum dots -- 2. Human health and safety consequences of SMNs -- 3. Economic aspects of NMs used as catalysts -- 3.1 Nano zerovalent iron (nZVI) -- 3.2 CFM@PDA/Pd composite nanocatalyst -- 3.3 FeOx/C nanocatalyst -- 3.4 UV/Ni-TiO2 nanocatalyst -- 3.5 FePt-Ag nanocatalysts -- 3.6 Other nanocatalysts -- 4. Conclusions and future perspectives -- Acknowledgments -- References -- 13 -- Future of SMNs catalysts for industry applications -- 1. Introduction -- 2. Nanoparticles catalysts -- 3. Catalytic applications of nanomaterial -- 3.1 Surface modification of nanoparticles and techniques -- 4. Shape and size dependent catalysts and reactions -- 4.1 Shape dependency of activity in water-gas shift -- 4.2 Oxidation -- 4.3 Hydrogenations -- 5. Metal-isolated single atoms -- 5.1 Atomic layer deposition method (ALD) -- 5.2 Isolated cluster site catalysts (ICSC) -- 5.3 Plasma -- 6. Conclusion and outlook -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X -- Z -- Back Cover.
    average rating: 0.0 (0 votes)
No physical items for this record

Print version record.

Front Cover -- SURFACE MODIFIED NANOMATERIALS FOR APPLICATIONS IN CATALYSIS -- SURFACE MODIFIED NANOMATERIALS FOR APPLICATIONS IN CATALYSIS: FUNDAMENTALS, METHODS AND APPLICATIONS -- Copyright -- CONTENTS -- Contributors -- About the editors -- Introduction to surface-modified nanomaterials -- REFERENCES -- 1 -- New frontiers for heterogeneous catalysis: surface modification of nanomaterials -- 1. Introduction: catalysts, nanomaterials (NMs) and nanocatalysts (NCs) -- 2. Synthetic strategies of NCs -- 3. Need for surface functionalization -- 4. Types of NMs and their functionalization procedures -- 5. Selective applications of surface-functionalized NCs -- 6. Characterization of surface-functionalized NCs -- 7. Topics to be covered in this book -- 8. Summary: present status and future direction -- Abbreviations -- References -- 2 -- Fundamental concepts on surface chemistry for nanoparticle modifications -- 1. Introduction -- 1.1 Steric stabilization -- 1.2 Use of silica nanoparticles for the stabilization of nanoparticles -- 1.3 Carbon materials in the stabilization of nanoparticles -- 1.4 Chemical methods of nanoparticle synthesis using various functional surface -- 2. Esterification reaction method -- 3. Phosphate ester method -- 4. In situ modification method -- 5. Conclusions -- References -- 3 -- Synthesis of surface-modified nanomaterials -- 1. Introduction -- 2. Nanomaterials surface chemistry and Zeta potential -- 3. Surface modification of catalytic nanoparticles by thermal and plasma treatment -- 4. Silane chemical treatment -- 5. Ligand immobilization techniques to modify catalytic nanoparticles -- 6. Surface modification via single-atom anchoring -- 7. Industrial-scale utilization of synthetic methods to prepare surface-modified nanomaterials -- 8. Challenges, future perspective, and conclusions -- References.

4 -- Surface modification of nano-based catalytic materials for enhanced water treatment applications -- 1. Nanomaterials for water treatment -- 2. Advancement on modification of nanomaterials -- 3. Examples of nanoscale modified catalytic materials -- 3.1 TiO2-based materials -- 3.2 Carbon-based materials for water treatment -- 3.3 NZVI-based materials for water treatment -- 3.3.1 Modification needs and routes of modification of ZVI -- 3.3.2 Surface modifiers -- 3.3.3 Bimetallic particles -- 3.3.4 Sulfidation -- 3.3.5 NZVI supported on various materials -- 3.3.6 Emulsification -- 3.3.7 Combined technologies -- 3.3.8 Examples of water-treatment enhancement of NZVI-based materials -- 4. Conclusions -- Acknowledgment -- References -- 5 -- Surface-modified nanomaterials-based catalytic materials for water purification, hydrocarbon production, and po ... -- 1. Introduction -- 2. Nanocatalyst materials -- 3. Wastewater treatment -- 3.1 Zero-valent metal nanocatalysts -- 3.2 Metal oxide nanocatalysts -- 3.2.1 TiO2 -- 3.2.2 Fe2O3 -- 3.2.3 ZnO -- 3.3 Carbon-based nanocatalysts -- 3.3.1 Functionalized graphene-based nanocatalysts -- 3.3.2 Functionalized CNT-based nanocatalysts -- 3.4 Polymer-based nanocatalysts -- 3.5 Miscellaneous nanocatalysts -- 4. Nanocatalysts in hydrocarbon production -- 4.1 Biomass to hydrocarbon -- 4.1.1 Pyrolysis -- 4.1.2 Liquefaction -- 4.1.3 Gasification -- 4.2 CO2 to methanol and other hydrocarbons -- 5. Recent advancement and real-time utilization of nanocatalysts -- 6. Conclusion -- Acknowledgments -- References -- 6 -- Surface-modified nanomaterial-based catalytic materials for the production of liquid fuels -- 1. Introduction -- 2. Surface modified nanomaterials (SMNs) for biomass conversion to liquid fuels -- 2.1 Production of 1, 2-propylene glycol and ethylene glycol -- 2.2 Production of 1,4-butanediol.

2.3 Production of furfural alcohol and related liquid fuels -- 2.4 Production of 5-hydroxymethylfurfural and related liquid derivatives -- 2.5 Production of biodiesel -- 2.6 Production of liquid hydrocarbons -- 3. Surface-modified nanomaterials for the transformation of carbon dioxide to liquid fuels -- 3.1 Reduction of CO2 to methanol -- 3.2 Reduction of CO2 to ethanol -- 3.3 Reduction of CO2 to propanol -- 3.4 Reduction of CO2 to formic acid -- 4. Future perspectives and conclusion -- Acknowledgments -- References -- 7 -- SMN-based catalytic membranes for environmental catalysis -- 1. Introduction -- 2. Challenges in SMNs and catalytic MRs -- 3. Types of catalytic membrane reactors (MRs) -- 3.1 Inorganic (silica/metallic) MRs -- 3.2 Organic (polymeric) MRs -- 4. Basic overview of polymeric MRs -- 5. Incorporation of SMNs into polymeric membranes -- 5.1 Methods of SMNs incorporation into polymeric MRs -- 5.1.1 Irradiation-based modifications -- 5.1.1.1 Plasma treatment -- 5.1.1.2 UV-irradiation -- 5.1.2 Grafting-based modifications -- 5.1.2.1 Chemical/electrochemical initiated grafting -- 5.1.2.2 Photoirradiation-induced grafting -- 5.1.2.3 High energy radiation (plasma) induced grafting -- 5.1.3 Surface coating-based modifications -- 5.1.3.1 Gas-phase coatings -- 5.1.3.2 Wet-phase coatings -- 5.2 Characterization methods of SMNs based polymer membranes -- 5.2.1 Advanced microscopic techniques -- 5.2.1.1 Cryo-transmission electron microscopy (cryo-TEM/cryo-EM) -- 5.2.1.2 Atomic force microscopy (AFM) -- 5.2.1.3 Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) -- 5.2.2 X-ray spectroscopic techniques -- 5.2.2.1 X-ray diffraction (XRD) -- 5.2.2.2 X-ray photon correlation spectroscopy (XPS or XPCS) -- 6. SMNs based polymeric membrane-assisted catalysis -- 6.1 Pervaporation for esterification -- 6.2 Hydrogenation.

6.3 CO2 sequestration: hydration of CO2 -- 7. Summary and future perspectives -- Abbreviations -- References -- 8 -- Semiconductor catalysts based on surface-modified nanomaterials (SMNs) for sensors -- 1. Introduction -- 2. Zero-dimensional (0D) nanomaterials -- 2.1 Quantum dots -- 2.2 Core-shell nanoparticles, hollow spheres, and nanocluster -- 3. One-dimensional (1D) nanomaterials -- 3.1 Synthesis of 1D nanostructures and sensor fabrication -- 3.2 1D NMs-based sensors -- 4. Two-dimensional (2D) nanomaterials -- 5. Tree-dimensional (3D) nanomaterials -- 6. Conclusion -- Acknowledgments -- List of resources -- References -- 9 -- Surface-modified carbonaceous nanomaterials for CO2 hydrogenation and fixation -- 1. Introduction -- 1.1 Surface modified carbonaceous nanomaterials -- 2. Basic concepts of CO2 sequestration (hydrogenation and fixation) -- 3. Heterogeneous catalyst in CO2 hydrogenation -- 3.1 CO2 hydrogenation to hydrocarbons -- 3.2 CO2 hydrogenation to alcohols -- 3.3 CO2 hydrogenation to value-added products -- 4. Heterogeneous catalyst in CO2 fixation -- 4.1 CO2 fixation to cyclic carbonates -- 4.2 CO2 fixation to cyclic carbamates -- 4.3 CO2 fixation to other value-added products -- 5. Summary and perspectives -- References -- 10 -- Surface-modified nanomaterials for synthesis of pharmaceuticals -- 1. Introduction -- 2. Noble metal-based nanoparticles for the synthesis of pharmaceuticals -- 3. Nonnoble metal-based nanoparticles for the synthesis of pharmaceuticals -- 4. Conclusions -- References -- 11 -- Surface-modified nanomaterial-based catalytic materials for modern industry applications -- 1. Introduction -- 2. Scope of the book chapter -- 3. Active role of surface-modified nanomaterials in industry -- 3.1 Silica-modified nanomaterials -- 3.2 Graphene modified nanomaterials -- 3.3 Magnetic surface-modified nanomaterials.

3.4 TiO2 surface-modified nanomaterials -- 4. Conclusion -- References -- 12 -- Assessment of health, safety, and economics of surface-modified nanomaterials for catalytic applications: a review -- 1. Introduction -- 1.1 NMs categories and nomenclature -- 1.2 Synthesis of SNMs with the application as catalyst -- 1.3 Different types of SNMs -- 1.3.1 Carbonaceous SNMs -- 1.4 Carbon nanotubes -- 1.5 Fullerene (nC60) -- 1.6 Graphene-based nanomaterials -- 1.6.1 Metal and metal oxides -- 1.7 Other nanomaterials -- 1.7.1 Quantum dots -- 2. Human health and safety consequences of SMNs -- 3. Economic aspects of NMs used as catalysts -- 3.1 Nano zerovalent iron (nZVI) -- 3.2 CFM@PDA/Pd composite nanocatalyst -- 3.3 FeOx/C nanocatalyst -- 3.4 UV/Ni-TiO2 nanocatalyst -- 3.5 FePt-Ag nanocatalysts -- 3.6 Other nanocatalysts -- 4. Conclusions and future perspectives -- Acknowledgments -- References -- 13 -- Future of SMNs catalysts for industry applications -- 1. Introduction -- 2. Nanoparticles catalysts -- 3. Catalytic applications of nanomaterial -- 3.1 Surface modification of nanoparticles and techniques -- 4. Shape and size dependent catalysts and reactions -- 4.1 Shape dependency of activity in water-gas shift -- 4.2 Oxidation -- 4.3 Hydrogenations -- 5. Metal-isolated single atoms -- 5.1 Atomic layer deposition method (ALD) -- 5.2 Isolated cluster site catalysts (ICSC) -- 5.3 Plasma -- 6. Conclusion and outlook -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X -- Z -- Back Cover.

There are no comments for this item.

Log in to your account to post a comment.