Background Subtraction [electronic resource] : Theory and Practice / by Ahmed Elgammal.
By: Elgammal, Ahmed [author.].
Contributor(s): SpringerLink (Online service).
Material type: BookSeries: Synthesis Lectures on Computer Vision: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2015Edition: 1st ed. 2015.Description: XVI, 67 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783031018138.Subject(s): Image processing -- Digital techniques | Computer vision | Pattern recognition systems | Computer Imaging, Vision, Pattern Recognition and Graphics | Computer Vision | Automated Pattern RecognitionAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 006 Online resources: Click here to access onlinePreface -- Acknowledgments -- Figure Credits -- Object Detection and Segmentation in Videos -- Background Subtraction from a Stationary Camera -- Background Subtraction from a Moving Camera -- Bibliography -- Author's Biography .
Background subtraction is a widely used concept for detection of moving objects in videos. In the last two decades there has been a lot of development in designing algorithms for background subtraction, as well as wide use of these algorithms in various important applications, such as visual surveillance, sports video analysis, motion capture, etc. Various statistical approaches have been proposed to model scene backgrounds. The concept of background subtraction also has been extended to detect objects from videos captured from moving cameras. This book reviews the concept and practice of background subtraction. We discuss several traditional statistical background subtraction models, including the widely used parametric Gaussian mixture models and non-parametric models. We also discuss the issue of shadow suppression, which is essential for human motion analysis applications. This book discusses approaches and tradeoffs for background maintenance. This book also reviews many of the recent developments in background subtraction paradigm. Recent advances in developing algorithms for background subtraction from moving cameras are described, including motion-compensation-based approaches and motion-segmentation-based approaches. For links to the videos to accompany this book, please see sites.google.com/a/morganclaypool.com/backgroundsubtraction/ Table of Contents: Preface / Acknowledgments / Figure Credits / Object Detection and Segmentation in Videos / Background Subtraction from a Stationary Camera / Background Subtraction from a Moving Camera / Bibliography / Author's Biography.
There are no comments for this item.