Normal view MARC view ISBD view

Deep Learning for Computer Architects [electronic resource] / by Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks.

By: Reagen, Brandon [author.].
Contributor(s): Adolf, Robert [author.] | Whatmough, Paul [author.] | Wei, Gu-Yeon [author.] | Brooks, David [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Synthesis Lectures on Computer Architecture: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2017Edition: 1st ed. 2017.Description: XIV, 109 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783031017568.Subject(s): Electronic circuits | Microprocessors | Computer architecture | Electronic Circuits and Systems | Processor ArchitecturesAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Preface -- Introduction -- Foundations of Deep Learning -- Methods and Models -- Neural Network Accelerator Optimization: A Case Study -- A Literature Survey and Review -- Conclusion -- Bibliography -- Authors' Biographies.
In: Springer Nature eBookSummary: Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloadsthemselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.
    average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Introduction -- Foundations of Deep Learning -- Methods and Models -- Neural Network Accelerator Optimization: A Case Study -- A Literature Survey and Review -- Conclusion -- Bibliography -- Authors' Biographies.

Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloadsthemselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

There are no comments for this item.

Log in to your account to post a comment.