000 03717nam a22004815i 4500
001 978-1-4471-5185-2
003 DE-He213
005 20200420220218.0
007 cr nn 008mamaa
008 130616s2013 xxk| s |||| 0|eng d
020 _a9781447151852
_9978-1-4471-5185-2
024 7 _a10.1007/978-1-4471-5185-2
_2doi
050 4 _aQ334-342
050 4 _aTJ210.2-211.495
072 7 _aUYQ
_2bicssc
072 7 _aTJFM1
_2bicssc
072 7 _aCOM004000
_2bisacsh
082 0 4 _a006.3
_223
100 1 _aAldrich, Chris.
_eauthor.
245 1 0 _aUnsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods
_h[electronic resource] /
_cby Chris Aldrich, Lidia Auret.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2013.
300 _aXIX, 374 p. 208 illus., 151 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAdvances in Computer Vision and Pattern Recognition,
_x2191-6586
505 0 _aIntroduction -- Overview of Process Fault Diagnosis -- Artificial Neural Networks -- Statistical Learning Theory and Kernel-Based Methods -- Tree-Based Methods -- Fault Diagnosis in Steady State Process Systems -- Dynamic Process Monitoring -- Process Monitoring Using Multiscale Methods.
520 _aAlgorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data. This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: Reviews the application of machine learning to process monitoring and fault diagnosis Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning Describes the use of spectral methods in process fault diagnosis This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning. Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa.
650 0 _aComputer science.
650 0 _aArtificial intelligence.
650 1 4 _aComputer Science.
650 2 4 _aArtificial Intelligence (incl. Robotics).
700 1 _aAuret, Lidia.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781447151845
830 0 _aAdvances in Computer Vision and Pattern Recognition,
_x2191-6586
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4471-5185-2
912 _aZDB-2-SCS
942 _cEBK
999 _c51705
_d51705