000 | 03506nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-3-319-25507-1 | ||
003 | DE-He213 | ||
005 | 20200421111656.0 | ||
007 | cr nn 008mamaa | ||
008 | 160219s2015 gw | s |||| 0|eng d | ||
020 |
_a9783319255071 _9978-3-319-25507-1 |
||
024 | 7 |
_a10.1007/978-3-319-25507-1 _2doi |
|
050 | 4 | _aTK5105.5-5105.9 | |
072 | 7 |
_aUKN _2bicssc |
|
072 | 7 |
_aCOM075000 _2bisacsh |
|
082 | 0 | 4 |
_a004.6 _223 |
100 | 1 |
_aAbboud, Khadige. _eauthor. |
|
245 | 1 | 0 |
_aMobility Modeling for Vehicular Communication Networks _h[electronic resource] / _cby Khadige Abboud, Weihua Zhuang. |
250 | _a1st ed. 2015. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2015. |
|
300 |
_aXIX, 63 p. 27 illus., 3 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSpringerBriefs in Electrical and Computer Engineering, _x2191-8112 |
|
505 | 0 | _aIntroduction.-System model -- Microscopic vehicle mobility model -- Spatio-temporal network topology analysis -- Conclusions and future work. | |
520 | _aThis brief presents a stochastic microscopic mobility model that describes the temporal changes of intervehicle distances. The model is consistent with simulated and empirical vehicle traffic patterns. Using stochastic lumpability methods, the proposed mobility model is mapped into an aggregated mobility model that describes the mobility of a group of vehicles. In addition, the proposed mobility model is used to analyze the spatiotemporal VANET topology. Two metrics are proposed to characterize the impact of vehicle mobility on VANET topology: the time period between successive changes in communication link state (connection and disconnection) and the time period between successive changes in node's one-hop neighborhood. Using the proposed lumped group mobility model, the two VANET topology metrics are probabilistically characterized for different vehicular traffic flow conditions. Furthermore, the limiting behavior of a system of two-hop vehicles and the overlap-state of their coverage ranges is modeled, and the steady-state number of common vehicle neighbors between the two vehicles is approximately derived. The proposed mobility model will facilitate mathematical analysis in VANETs. The spatiotemporal VANET topology analysis provides a useful tool for the development of mobility-aware vehicular network protocols. Mobility Modeling for Vehicular Communication Networks is designed for researchers, developers, and professionals involved with vehicular communications. It is also suitable for advanced-level students interested in communications, transport infrastructure, and infotainment applications. | ||
650 | 0 | _aComputer science. | |
650 | 0 | _aComputer communication systems. | |
650 | 0 | _aElectrical engineering. | |
650 | 1 | 4 | _aComputer Science. |
650 | 2 | 4 | _aComputer Communication Networks. |
650 | 2 | 4 | _aCommunications Engineering, Networks. |
700 | 1 |
_aZhuang, Weihua. _eauthor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319255057 |
830 | 0 |
_aSpringerBriefs in Electrical and Computer Engineering, _x2191-8112 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-319-25507-1 |
912 | _aZDB-2-SCS | ||
942 | _cEBK | ||
999 |
_c54686 _d54686 |