000 | 03486nam a22004695i 4500 | ||
---|---|---|---|
001 | 978-3-642-40837-3 | ||
003 | DE-He213 | ||
005 | 20200421111701.0 | ||
007 | cr nn 008mamaa | ||
008 | 130924s2014 gw | s |||| 0|eng d | ||
020 |
_a9783642408373 _9978-3-642-40837-3 |
||
024 | 7 |
_a10.1007/978-3-642-40837-3 _2doi |
|
050 | 4 | _aQ342 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aData Mining and Knowledge Discovery for Big Data _h[electronic resource] : _bMethodologies, Challenge and Opportunities / _cedited by Wesley W. Chu. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2014. |
|
300 |
_aX, 311 p. 99 illus., 29 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aStudies in Big Data, _x2197-6503 ; _v1 |
|
505 | 0 | _aAspect and Entity Extraction for Opinion Mining -- Mining Periodicity from Dynamic and Incomplete Spatiotemporal Data -- Spatio-Temporal Data Mining for Climate Data: Advances, Challenges -- Mining Discriminative Subgraph Patterns from Structural Data -- Path Knowledge Discovery: Multilevel Text Mining as a Methodology for Phenomics -- InfoSearch: A Social Search Engine -- Social Media in Disaster Relief: Usage Patterns, Data Mining Tools, and Current Research Directions -- A Generalized Approach for Social Network Integration and Analysis with Privacy Preservation -- A Clustering Approach to Constrained Binary Matrix Factorization. | |
520 | _aThe field of data mining has made significant and far-reaching advances over the past three decades. Because of its potential power for solving complex problems, data mining has been successfully applied to diverse areas such as business, engineering, social media, and biological science. Many of these applications search for patterns in complex structural information. In biomedicine for example, modeling complex biological systems requires linking knowledge across many levels of science, from genes to disease. Further, the data characteristics of the problems have also grown from static to dynamic and spatiotemporal, complete to incomplete, and centralized to distributed, and grow in their scope and size (this is known as big data). The effective integration of big data for decision-making also requires privacy preservation. The contributions to this monograph summarize the advances of data mining in the respective fields. This volume consists of nine chapters that address subjects ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction via binary matrix factorization. | ||
650 | 0 | _aEngineering. | |
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aComputational intelligence. | |
650 | 1 | 4 | _aEngineering. |
650 | 2 | 4 | _aComputational Intelligence. |
650 | 2 | 4 | _aArtificial Intelligence (incl. Robotics). |
700 | 1 |
_aChu, Wesley W. _eeditor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783642408366 |
830 | 0 |
_aStudies in Big Data, _x2197-6503 ; _v1 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-40837-3 |
912 | _aZDB-2-ENG | ||
942 | _cEBK | ||
999 |
_c54987 _d54987 |