000 | 03587nam a22004815i 4500 | ||
---|---|---|---|
001 | 978-3-319-12880-1 | ||
003 | DE-He213 | ||
005 | 20200421111837.0 | ||
007 | cr nn 008mamaa | ||
008 | 150405s2015 gw | s |||| 0|eng d | ||
020 |
_a9783319128801 _9978-3-319-12880-1 |
||
024 | 7 |
_a10.1007/978-3-319-12880-1 _2doi |
|
050 | 4 | _aQ342 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aPolkowski, Lech. _eauthor. |
|
245 | 1 | 0 |
_aGranular Computing in Decision Approximation _h[electronic resource] : _bAn Application of Rough Mereology / _cby Lech Polkowski, Piotr Artiemjew. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2015. |
|
300 |
_aXV, 452 p. 230 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aIntelligent Systems Reference Library, _x1868-4394 ; _v77 |
|
505 | 0 | _aSimilarity and Granulation -- Mereology and Rough Mereology. Rough Mereological Granulation -- Learning data Classification. Classifiers in General and in Decision Systems -- Methodologies for Granular Reflections -- Covering Strategies -- Layered Granulation -- Naive Bayes Classifier on Granular Reflections -- The Case of Concept-Dependent Granulation -- Granular Computing in the Problem of Missing Values -- Granular Classifiers Based on Weak Rough Inclusions -- Effects of Granulation on Entropy and Noise in Data. - Conclusions -- Appendix. Data Characteristics Bearing on Classification. | |
520 | _aThis book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k-nearest neighbors and bayesian classifiers. Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce substantially the size of the granulated data set as well as the set of granular decision rules. This feature makes the presented approach attractive in cases where a small number of rules providing a high classification accuracy is desirable. As basic algorithms used throughout the text are explained and illustrated with hand examples, the book may also serve as a textbook. | ||
650 | 0 | _aEngineering. | |
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aComputational intelligence. | |
650 | 1 | 4 | _aEngineering. |
650 | 2 | 4 | _aComputational Intelligence. |
650 | 2 | 4 | _aArtificial Intelligence (incl. Robotics). |
700 | 1 |
_aArtiemjew, Piotr. _eauthor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319128795 |
830 | 0 |
_aIntelligent Systems Reference Library, _x1868-4394 ; _v77 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-319-12880-1 |
912 | _aZDB-2-ENG | ||
942 | _cEBK | ||
999 |
_c55319 _d55319 |