000 03546nam a22005415i 4500
001 978-3-319-16030-6
003 DE-He213
005 20200421111848.0
007 cr nn 008mamaa
008 150604s2015 gw | s |||| 0|eng d
020 _a9783319160306
_9978-3-319-16030-6
024 7 _a10.1007/978-3-319-16030-6
_2doi
050 4 _aQ334-342
050 4 _aTJ210.2-211.495
072 7 _aUYQ
_2bicssc
072 7 _aTJFM1
_2bicssc
072 7 _aCOM004000
_2bisacsh
082 0 4 _a006.3
_223
245 1 0 _aGenetic Programming Theory and Practice XII
_h[electronic resource] /
_cedited by Rick Riolo, William P. Worzel, Mark Kotanchek.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2015.
300 _aXII, 182 p. 59 illus., 12 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGenetic and Evolutionary Computation,
_x1932-0167
505 0 _aApplication of Machine-Learing Methods to Understand Gene Expression Regulation -- Identification of Novel Genetic Models of Glaucoma using the "Emergent" Genetic Programming-Based Artificial Intelligence System -- Inheritable Epigenetics in Genetic Programming -- SKGP: The Way of the Combinator -- Sequential Symbolic Regression with Genetic Programming -- Sliding Window Symbolic Regression for Detecting Changes of System Dynamics -- Extremely Accurate Symbolic Regression for Large Feature Problems -- How to Exploit Alignment in the Error Space: Two Different GP Models -- Analyzing a Decade of Human-Competitive ("HUMIE") Winners: What Can We Learn? -- Tackling the Boolean Multiplexer Function Using a Highly Distributed Genetic Programming System.
520 _aThese contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: gene expression regulation, novel genetic models for glaucoma, inheritable epigenetics, combinators in genetic programming, sequential symbolic regression, system dynamics, sliding window symbolic regression, large feature problems, alignment in the error space, HUMIE winners, Boolean multiplexer function, and highly distributed genetic programming systems. Application areas include chemical process control, circuit design, financial data mining and bioinformatics. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
650 0 _aComputer science.
650 0 _aComputer programming.
650 0 _aAlgorithms.
650 0 _aArtificial intelligence.
650 1 4 _aComputer Science.
650 2 4 _aArtificial Intelligence (incl. Robotics).
650 2 4 _aAlgorithm Analysis and Problem Complexity.
650 2 4 _aProgramming Techniques.
700 1 _aRiolo, Rick.
_eeditor.
700 1 _aWorzel, William P.
_eeditor.
700 1 _aKotanchek, Mark.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319160290
830 0 _aGenetic and Evolutionary Computation,
_x1932-0167
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-16030-6
912 _aZDB-2-SCS
942 _cEBK
999 _c55920
_d55920