000 | 03546nam a22005415i 4500 | ||
---|---|---|---|
001 | 978-3-319-16030-6 | ||
003 | DE-He213 | ||
005 | 20200421111848.0 | ||
007 | cr nn 008mamaa | ||
008 | 150604s2015 gw | s |||| 0|eng d | ||
020 |
_a9783319160306 _9978-3-319-16030-6 |
||
024 | 7 |
_a10.1007/978-3-319-16030-6 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTJ210.2-211.495 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aTJFM1 _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aGenetic Programming Theory and Practice XII _h[electronic resource] / _cedited by Rick Riolo, William P. Worzel, Mark Kotanchek. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2015. |
|
300 |
_aXII, 182 p. 59 illus., 12 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aGenetic and Evolutionary Computation, _x1932-0167 |
|
505 | 0 | _aApplication of Machine-Learing Methods to Understand Gene Expression Regulation -- Identification of Novel Genetic Models of Glaucoma using the "Emergent" Genetic Programming-Based Artificial Intelligence System -- Inheritable Epigenetics in Genetic Programming -- SKGP: The Way of the Combinator -- Sequential Symbolic Regression with Genetic Programming -- Sliding Window Symbolic Regression for Detecting Changes of System Dynamics -- Extremely Accurate Symbolic Regression for Large Feature Problems -- How to Exploit Alignment in the Error Space: Two Different GP Models -- Analyzing a Decade of Human-Competitive ("HUMIE") Winners: What Can We Learn? -- Tackling the Boolean Multiplexer Function Using a Highly Distributed Genetic Programming System. | |
520 | _aThese contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: gene expression regulation, novel genetic models for glaucoma, inheritable epigenetics, combinators in genetic programming, sequential symbolic regression, system dynamics, sliding window symbolic regression, large feature problems, alignment in the error space, HUMIE winners, Boolean multiplexer function, and highly distributed genetic programming systems. Application areas include chemical process control, circuit design, financial data mining and bioinformatics. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results. | ||
650 | 0 | _aComputer science. | |
650 | 0 | _aComputer programming. | |
650 | 0 | _aAlgorithms. | |
650 | 0 | _aArtificial intelligence. | |
650 | 1 | 4 | _aComputer Science. |
650 | 2 | 4 | _aArtificial Intelligence (incl. Robotics). |
650 | 2 | 4 | _aAlgorithm Analysis and Problem Complexity. |
650 | 2 | 4 | _aProgramming Techniques. |
700 | 1 |
_aRiolo, Rick. _eeditor. |
|
700 | 1 |
_aWorzel, William P. _eeditor. |
|
700 | 1 |
_aKotanchek, Mark. _eeditor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319160290 |
830 | 0 |
_aGenetic and Evolutionary Computation, _x1932-0167 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-319-16030-6 |
912 | _aZDB-2-SCS | ||
942 | _cEBK | ||
999 |
_c55920 _d55920 |