000 | 03138nam a22005415i 4500 | ||
---|---|---|---|
001 | 978-3-662-45000-0 | ||
003 | DE-He213 | ||
005 | 20200421112227.0 | ||
007 | cr nn 008mamaa | ||
008 | 150105s2014 gw | s |||| 0|eng d | ||
020 |
_a9783662450000 _9978-3-662-45000-0 |
||
024 | 7 |
_a10.1007/978-3-662-45000-0 _2doi |
|
050 | 4 | _aQ337.5 | |
050 | 4 | _aTK7882.P3 | |
072 | 7 |
_aUYQP _2bicssc |
|
072 | 7 |
_aCOM016000 _2bisacsh |
|
082 | 0 | 4 |
_a006.4 _223 |
100 | 1 |
_aHuang, Yongzhen. _eauthor. |
|
245 | 1 | 0 |
_aFeature Coding for Image Representation and Recognition _h[electronic resource] / _cby Yongzhen Huang, Tieniu Tan. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2014. |
|
300 |
_aXIII, 74 p. 36 illus., 32 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSpringerBriefs in Computer Science, _x2191-5768 |
|
505 | 0 | _a1. Introduction -- 2. Taxonomy -- 3. Representative Feature Coding Algorithms -- 4. Evolution of Feature Coding -- 5. Experimental Study of Feature Coding -- 6. Enhancement via Integrating Spatial Information -- 7. Enhancement via Integrating High Order Coding Information -- 8. Conclusion. | |
520 | _aThis brief presents a comprehensive introduction to feature coding, which serves as a key module for the typical object recognition pipeline. The text offers a rich blend of theory and practice while reflects the recent developments on feature coding, covering the following five aspects: (1) Review the state-of-the-art, analyzing the motivations and mathematical representations of various feature coding methods; (2) Explore how various feature coding algorithms evolve along years; (3) Summarize the main characteristics of typical feature coding algorithms and categorize them accordingly; (4) Discuss the applications of feature coding in different visual tasks, analyze the influence of some key factors in feature coding with intensive experimental studies; (5) Provide the suggestions of how to apply different feature coding methods and forecast the potential directions for future work on the topic. It is suitable for students, researchers, practitioners interested in object recognition. | ||
650 | 0 | _aComputer science. | |
650 | 0 | _aAlgorithms. | |
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aImage processing. | |
650 | 0 | _aPattern recognition. | |
650 | 1 | 4 | _aComputer Science. |
650 | 2 | 4 | _aPattern Recognition. |
650 | 2 | 4 | _aImage Processing and Computer Vision. |
650 | 2 | 4 | _aArtificial Intelligence (incl. Robotics). |
650 | 2 | 4 | _aAlgorithm Analysis and Problem Complexity. |
700 | 1 |
_aTan, Tieniu. _eauthor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783662449998 |
830 | 0 |
_aSpringerBriefs in Computer Science, _x2191-5768 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-662-45000-0 |
912 | _aZDB-2-SCS | ||
942 | _cEBK | ||
999 |
_c57727 _d57727 |