000 03660nam a22005535i 4500
001 978-3-319-08954-6
003 DE-He213
005 20200421112234.0
007 cr nn 008mamaa
008 140725s2015 gw | s |||| 0|eng d
020 _a9783319089546
_9978-3-319-08954-6
024 7 _a10.1007/978-3-319-08954-6
_2doi
050 4 _aTK5102.9
050 4 _aTA1637-1638
050 4 _aTK7882.S65
072 7 _aTTBM
_2bicssc
072 7 _aUYS
_2bicssc
072 7 _aTEC008000
_2bisacsh
072 7 _aCOM073000
_2bisacsh
082 0 4 _a621.382
_223
100 1 _aHelwani, Karim.
_eauthor.
245 1 0 _aAdaptive Identification of Acoustic Multichannel Systems Using Sparse Representations
_h[electronic resource] /
_cby Karim Helwani.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2015.
300 _aXIV, 113 p. 39 illus., 10 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aT-Labs Series in Telecommunication Services,
_x2192-2810
505 0 _aIntroduction -- Fundamentals of Adaptive Filter Theory -- Spatio-Temporal Regularized Recursive Least Squares Algorithm -- Sparse Representation of Multichannel Acoustic Systems -- Unique System Identification from Projections -- Geometrical Constraints -- Acoustic Echo Suppression -- Conclusion.
520 _aThis book treats the topic of extending the adaptive filtering theory in the context of massive multichannel systems by taking into account a priori knowledge of the underlying system or signal. The starting point is exploiting the sparseness in acoustic multichannel system in order to solve the non-uniqueness problem with an efficient algorithm for adaptive filtering that does not require any modification of the loudspeaker signals. The book discusses in detail the derivation of general sparse representations of acoustic MIMO systems in signal or system dependent transform domains. Efficient adaptive filtering algorithms in the transform domains are presented and the relation between the signal- and the system-based sparse representations is emphasized. Furthermore, the book presents a novel approach to spatially preprocess the loudspeaker signals in a full-duplex communication system. The idea of the preprocessing is to prevent the echoes from being captured by the microphone array in order to support the AEC system. The preprocessing stage is given as an exemplarily application of a novel unified framework for the synthesis of sound figures. Finally, a multichannel system for the acoustic echo suppression is presented that can be used as a postprocessing stage for removing residual echoes. As first of its kind, it extracts the near-end signal from the microphone signal with a distortionless constraint and without requiring a double-talk detector.
650 0 _aEngineering.
650 0 _aInput-output equipment (Computers).
650 0 _aAcoustics.
650 0 _aElectrical engineering.
650 1 4 _aEngineering.
650 2 4 _aSignal, Image and Speech Processing.
650 2 4 _aInput/Output and Data Communications.
650 2 4 _aCommunications Engineering, Networks.
650 2 4 _aAcoustics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319089539
830 0 _aT-Labs Series in Telecommunication Services,
_x2192-2810
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-08954-6
912 _aZDB-2-ENG
942 _cEBK
999 _c58159
_d58159