000 14936nam a2200997 i 4500
001 6798069
003 IEEE
005 20200421114418.0
006 m o d
007 cr |n|||||||||
008 151222s2014 nju ob 001 eng d
010 _z 2013036796 (print)
020 _a9781119945505
_qelectronic book
020 _z9780470740583
_qprint
020 _z111994550X
_qelectronic book
020 _z9781119945512
_qelectronic book
020 _z1119945518
_qelectronic book
024 7 _a10.1002/9781119945505
_2doi
035 _a(CaBNVSL)mat06798069
035 _a(IDAMS)0b000064821b2e73
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK5103.2
_b.D88 2014eb
100 1 _aDutta, Ashutosh,
_eauthor.
245 1 0 _aMobility protocols and handover optimization :
_bdesign, evaluation and application /
_cAshutosh Dutta, Henning Schulzrinne.
250 _aFirst edition.
264 1 _aChichester, West Sussex :
_bIEEE Press :
_bWiley,
_c[2014]
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2014]
300 _a1 PDF (xxxiv, 442 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aWiley - IEEE
500 _aEdition statement from running title area.
504 _aIncludes bibliographical references and index.
505 0 _aAbout the Authors xv -- Foreword xvii -- Preface xix -- Acknowledgements xxiii -- List of Abbreviations xxv -- 1 Introduction 1 -- 1.1 Types of Mobility 2 -- 1.1.1 Terminal Mobility 2 -- 1.1.2 Personal Mobility 5 -- 1.1.3 Session Mobility 6 -- 1.1.4 Service Mobility 7 -- 1.2 Performance Requirements 7 -- 1.3 Motivation 8 -- 1.4 Summary of Key Contributions 9 -- 2 Analysis of Mobility Protocols for Multimedia 13 -- 2.1 Summary of Key Contributions and Indicative Results 13 -- 2.2 Introduction 14 -- 2.3 Cellular 1G 15 -- 2.3.1 System Architecture 15 -- 2.3.2 Handoff Procedure 17 -- 2.4 Cellular 2G Mobility 17 -- 2.4.1 GSM 17 -- 2.4.2 IS-95 19 -- 2.5 Cellular 3G Mobility 23 -- 2.5.1 WCDMA 24 -- 2.5.2 CDMA2000 26 -- 2.6 4G Networks 27 -- 2.6.1 Evolved Packet System 28 -- 2.6.2 WiMAX Mobility 31 -- 2.7 IP-Based Mobility 34 -- 2.7.1 Network Layer Macromobility 34 -- 2.7.2 Network Layer Micromobility 40 -- 2.7.3 NETMOB: Network Mobility 46 -- 2.7.4 Transport Layer Mobility 49 -- 2.7.5 Application Layer Mobility 49 -- 2.7.6 Host Identity Protocol 50 -- 2.7.7 MOBIKE 52 -- 2.7.8 IAPP 53 -- 2.8 Heterogeneous Handover 55 -- 2.8.1 UMTS-WLAN Handover 55 -- 2.8.2 LTE-WLAN Handover 58 -- 2.9 Multicast Mobility 61 -- 2.10 Concluding Remarks 71 -- 3 Systems Analysis of Mobility Events 73 -- 3.1 Summary of Key Contributions and Indicative Results 75 -- 3.2 Introduction 75 -- 3.2.1 Comparative Analysis of Mobility Protocols 77 -- 3.3 Analysis of Handoff Components 78 -- 3.3.1 Network Discovery and Selection 80 -- 3.3.2 Network Attachment 80 -- 3.3.3 Configuration 81 -- 3.3.4 Security Association 81 -- 3.3.5 Binding Update 82 -- 3.3.6 Media Rerouting 83 -- 3.4 Effect of Handoff across Layers 83 -- 3.4.1 Layer 2 Delay 84 -- 3.4.2 Layer 3 Delay 84 -- 3.4.3 Application Layer Delay 85 -- 3.4.4 Handoff Operations across Layers 85 -- 3.5 Concluding Remarks 90 -- 4 Modeling Mobility 91 -- 4.1 Summary of Key Contributions and Indicative Results 91 -- 4.2 Introduction 92 -- 4.3 Related Work 92.
505 8 _a4.4 Modeling Mobility as a Discrete-Event Dynamic System 93 -- 4.5 Petri Net Primitives 94 -- 4.6 Petri-Net-Based Modeling Methodologies 96 -- 4.7 Resource Utilization during Handoff 97 -- 4.8 Data Dependency Analysis of the Handoff Process 99 -- 4.8.1 Petri-Net-Based Data Dependency 99 -- 4.8.2 Analysis of Data Dependency during Handoff Process 100 -- 4.9 Petri Net Model for Handoff 105 -- 4.10 Petri-Net-Based Analysis of Handoff Event 113 -- 4.10.1 Analysis of Deadlocks in Handoff 114 -- 4.10.2 Reachability Analysis 120 -- 4.10.3 Matrix Equations 122 -- 4.11 Evaluation of Systems Performance Using Petri Nets 123 -- 4.11.1 Cycle-Time-Based Approach 123 -- 4.11.2 Floyd-Algorithm-Based Approach 124 -- 4.11.3 Resource-Time Product Approach 125 -- 4.12 Opportunities for Optimization 128 -- 4.12.1 Analysis of Parallelism in Handoff Operations 129 -- 4.12.2 Opportunities for Proactive Operation 129 -- 4.13 Concluding Remarks 130 -- 5 Layer 2 Optimization 131 -- 5.1 Introduction 131 -- 5.2 Related Work 131 -- 5.3 IEEE 802.11 Standards 132 -- 5.3.1 The IEEE 802.11 Wireless LAN Architecture 133 -- 5.3.2 IEEE 802.11 Management Frames 134 -- 5.4 Handoff Procedure with Active Scanning 135 -- 5.4.1 Steps during Handoff 135 -- 5.5 Fast-Handoff Algorithm 137 -- 5.5.1 Selective Scanning 137 -- 5.5.2 Caching 138 -- 5.6 Implementation 142 -- 5.6.1 The HostAP Driver 142 -- 5.7 Measurements 142 -- 5.7.1 Experimental Setup 142 -- 5.7.2 The Environment 142 -- 5.7.3 Experiments 143 -- 5.8 Measurement Results 143 -- 5.8.1 Handoff Time 143 -- 5.8.2 Packet Loss 143 -- 5.9 Conclusions and Future Work 146 -- 6 Mobility Optimization Techniques 149 -- 6.1 Summary of Key Contributions and Indicative Results 149 -- 6.1.1 Discovery 149 -- 6.1.2 Authentication 150 -- 6.1.3 Layer 3 Configuration 151 -- 6.1.4 Layer 3 Security Association 152 -- 6.1.5 Binding Update 152 -- 6.1.6 Media Rerouting 153 -- 6.1.7 Route Optimization 154 -- 6.1.8 Media-Independent Cross-Layer Triggers 155 -- 6.2 Introduction 156.
505 8 _a6.3 Discovery 156 -- 6.3.1 Key Principles 156 -- 6.3.2 Related Work 157 -- 6.3.3 Application Layer Discovery 158 -- 6.3.4 Experimental Results and Analysis 161 -- 6.4 Authentication 164 -- 6.4.1 Key Principles 166 -- 6.4.2 Related Work 166 -- 6.4.3 Network-Layer-Assisted Preauthentication 169 -- 6.4.4 Experimental Results and Analysis 173 -- 6.5 Layer 3 Configuration 177 -- 6.5.1 Key Principles 179 -- 6.5.2 Related Work 180 -- 6.5.3 Router-Assisted Duplicate Address Detection 180 -- 6.5.4 Proactive IP Address Configuration 180 -- 6.5.5 Experimental Results and Analysis 183 -- 6.6 Layer 3 Security Association 183 -- 6.6.1 Key Principles 184 -- 6.6.2 Related Work 184 -- 6.6.3 Anchor-Assisted Security Association 184 -- 6.6.4 Experimental Results and Analysis 187 -- 6.7 Binding Update 190 -- 6.7.1 Key Principles 191 -- 6.7.2 Related Work 191 -- 6.7.3 Hierarchical Binding Update 192 -- 6.7.4 Experimental Results and Analysis 195 -- 6.7.5 Proactive Binding Update 199 -- 6.8 Media Rerouting 199 -- 6.8.1 Key Principles 200 -- 6.8.2 Related Work 200 -- 6.8.3 Data Redirection Using Forwarding Agent 201 -- 6.8.4 Mobility-Proxy-Assisted Time-Bound Data Redirection 202 -- 6.8.5 Time-Bound Localized Multicasting 205 -- 6.9 Media Buffering 210 -- 6.9.1 Key Principles 211 -- 6.9.2 Related Work 211 -- 6.9.3 Protocol for Edge Buffering 212 -- 6.9.4 Experimental Results and Analysis 215 -- 6.9.5 Analysis of the Trade-off between Buffering Delay and Packet Loss 219 -- 6.10 Route Optimization 220 -- 6.10.1 Key Principles 221 -- 6.10.2 Related Work 221 -- 6.10.3 Maintaining a Direct Path by Application Layer Mobility 221 -- 6.10.4 Interceptor-Assisted Packet Modifier at the End Point 222 -- 6.10.5 Intercepting Proxy-Assisted Route Optimization 224 -- 6.10.6 Cost Analysis and Experimental Analysis 226 -- 6.10.7 Binding-Cache-Based Route Optimization 229 -- 6.11 Media-Independent Cross-Layer Triggers 232 -- 6.11.1 Key Principles 232 -- 6.11.2 Related Work 232 -- 6.11.3 Media Independent Handover Function 233.
505 8 _a6.11.4 Faster Link-Down Detection Scheme 238 -- 6.12 Concluding Remarks 241 -- 7 Optimization with Multilayer Mobility Protocols 243 -- 7.1 Summary of Key Contributions and Indicative Results 243 -- 7.2 Introduction 244 -- 7.3 Key Principles 245 -- 7.4 Related Work 245 -- 7.5 Multilayer Mobility Approach 246 -- 7.5.1 Policy-Based Mobility Protocols: SIP and MIP-LR 247 -- 7.5.2 Integration of SIP and MIP-LR with MMP 248 -- 7.5.3 Integration of Global Mobility Protocol with Micromobility Protocol 250 -- 7.5.4 Implementation of Multilayer Mobility Protocols 250 -- 7.5.5 Implementation and Performance Issues 252 -- 7.6 Concluding Remarks 255 -- 8 Optimizations for Simultaneous Mobility 257 -- 8.1 Summary of Key Contributions and Indicative Results 257 -- 8.2 Introduction 258 -- 8.2.1 Analysis of Simultaneous Mobility 258 -- 8.3 Illustration of the Simultaneous Mobility Problem 260 -- 8.4 Related Work 262 -- 8.5 Key Optimization Techniques 262 -- 8.6 Analytical Framework 262 -- 8.6.1 Fundamental Concepts 262 -- 8.6.2 Handoff Sequences 263 -- 8.6.3 Binding Updates 264 -- 8.6.4 Location Proxies and Binding Update Proxies 265 -- 8.7 Analyzing the Simultaneous Mobility Problem 267 -- 8.8 Probability of Simultaneous Mobility 270 -- 8.9 Solutions 272 -- 8.9.1 Soft Handoff 273 -- 8.9.2 Receiver-Side Mechanisms 273 -- 8.9.3 Sender-Side Mechanisms 275 -- 8.10 Application of Solution Mechanisms 276 -- 8.10.1 Mobile IPv6 277 -- 8.10.2 MIP-LR 279 -- 8.10.3 SIP-Based Mobility 280 -- 8.11 Concluding Remarks 282 -- 9 Handoff Optimization for Multicast Streaming 285 -- 9.1 Summary of Key Contributions and Indicative Results 285 -- 9.2 Introduction 286 -- 9.3 Key Principles 289 -- 9.4 Related Work 290 -- 9.5 Mobility in a Hierarchical Multicast Architecture 291 -- 9.5.1 Channel Announcement 293 -- 9.5.2 Channel Management 293 -- 9.5.3 Channel Tuning 293 -- 9.5.4 Local Advertisement Insertion 294 -- 9.5.5 Channel Monitor 294 -- 9.5.6 Security 295 -- 9.6 Optimization Techniques for Multicast Media Delivery 296.
505 8 _a9.6.1 Reactive Triggering 296 -- 9.6.2 Proactive Triggering 297 -- 9.6.3 Triggering during Configuration of a Mobile 298 -- 9.7 Experimental Results and Performance Analysis 299 -- 9.7.1 Experimental Results 299 -- 9.7.2 Performance Analysis 302 -- 9.8 Concluding Remarks 305 -- 10 Cooperative Roaming 307 -- 10.1 Introduction 307 -- 10.2 Related Work 309 -- 10.3 IP Multicast Addressing 310 -- 10.4 Cooperative Roaming 311 -- 10.4.1 Overview 311 -- 10.4.2 L2 Cooperation Protocol 312 -- 10.4.3 L3 Cooperation Protocol 313 -- 10.5 Cooperative Authentication 314 -- 10.5.1 Overview of IEEE 802.1x 314 -- 10.5.2 Cooperation in the Authentication Process 315 -- 10.5.3 Relay Process 316 -- 10.6 Security 318 -- 10.6.1 Security Issues in Roaming 318 -- 10.6.2 Cooperative Authentication and Security 319 -- 10.7 Streaming Media Support 320 -- 10.8 Bandwidth and Energy Usage 320 -- 10.9 Experiments 321 -- 10.9.1 Environment 321 -- 10.9.2 Implementation Details 322 -- 10.9.3 Experimental Setup 322 -- 10.9.4 Results 323 -- 10.10 Application Layer Mobility 328 -- 10.11 Load Balancing 329 -- 10.12 Multicast and Scalability 330 -- 10.13 An Alternative to Multicast 330 -- 10.14 Conclusions and Future Work 331 -- 11 System Evaluation 333 -- 11.1 Summary of Key Contributions and Indicative Results 333 -- 11.2 Introduction 334 -- 11.3 Experimental Validation 334 -- 11.3.1 The Media Independent Preauthentication Framework 334 -- 11.3.2 Intratechnology Handoff 338 -- 11.3.3 Intertechnology Handoff 340 -- 11.3.4 Cross-Layer-Trigger-Assisted Preauthentication 342 -- 11.3.5 Mobile-Initiated Handover with 802.21 Triggers 344 -- 11.3.6 Network-Initiated Handover with 802.21 Triggers 345 -- 11.3.7 Handover Preparation Time 346 -- 11.4 Handoff Optimization in IP Multimedia Subsystem 350 -- 11.4.1 Nonoptimized Handoff Mode 350 -- 11.4.2 Optimization with Reactive Context Transfer 351 -- 11.4.3 Optimization with Proactive Security Context Transfer 352 -- 11.4.4 Performance Results 353 -- 11.5 Systems Validation Using Petri-Net-Based Models 355.
505 8 _a11.5.1 MATLABÂȘ-Based Modeling of Handoff Functions 356 -- 11.5.2 Petri-Net-Based Model for Optimized Security Association 360 -- 11.5.3 Petri-Net-Based Model for Hierarchical Binding Update 361 -- 11.5.4 Petri-Net-Based Model for Media Redirection of In-Flight Data 362 -- 11.5.5 Petri-Net-Based Model of Optimized Configuration 364 -- 11.5.6 Petri-Net-Based Model for Multicast Mobility 364 -- 11.6 Scheduling Handoff Operations 365 -- 11.6.1 Sequential Scheduling 366 -- 11.6.2 Concurrent Scheduling 368 -- 11.6.3 Proactive Scheduling 368 -- 11.7 Verification of Systems Performance 369 -- 11.7.1 Cycle-Time-Based Approach 369 -- 11.7.2 Using the Floyd Algorithm 370 -- 11.8 Petri-Net-Based Modeling for Multi-Interface Mobility 371 -- 11.8.1 Multihoming Scenario 371 -- 11.8.2 Break-Before-Make Scenario 372 -- 11.8.3 Make-Before-Break Scenario 372 -- 11.8.4 MATLABÂȘ-Based Petri Net Modeling for Multi-Interface Mobility 372 -- 11.9 Deadlocks in Handoff Scheduling 374 -- 11.9.1 Handoff Schedules with Deadlocks 375 -- 11.9.2 Deadlock Prevention and Avoidance in Handoff Schedules 377 -- 11.10 Analysis of Level of Concurrency and Resources 380 -- 11.11 Trade-off Analysis for Proactive Handoff 385 -- 11.12 Concluding Remarks 389 -- 12 Conclusions 391 -- 12.1 General Principles of Mobility Optimization 391 -- 12.2 Summary of Contributions 393 -- 12.3 Future Work 394 -- A RDF Schema for Application Layer Discovery 395 -- A.1 Schema Primitives 395 -- B Definitions of Mobility-Related Terms 399 -- References 409 -- Index 425.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _a"In this book, the authors show how an optimized system of mobility management can improve the quality of service in existing forms of mobile communication"--
_cProvided by publisher.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/22/2015.
650 0 _aMobile communication systems.
650 0 _aComputer network protocols.
655 0 _aElectronic books.
695 _aAnalytical models
695 _aAuthentication
695 _aBase stations
695 _aContent distribution networks
695 _aDelays
695 _aHandover
695 _aIEEE 802.11 Standards
695 _aIP networks
695 _aManganese
695 _aMathematical model
695 _aMedia
695 _aMobile communication
695 _aMobile computing
695 _aMobile nodes
695 _aMobile radio mobility management
695 _aMultiaccess communication
695 _aNonhomogeneous media
695 _aOptimization
695 _aPetri nets
695 _aPredictive models
695 _aProbes
695 _aProtocols
695 _aReal-time systems
695 _aRouting protocols
695 _aSchedules
695 _aSections
695 _aSecurity
695 _aServers
695 _aSystem performance
695 _aTime division multiple access
700 1 _aSchulzrinne, Henning,
_eauthor.
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aWiley,
_epublisher.
776 0 8 _iPrint version:
_z9780470740583
830 0 _aWiley - IEEE
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6798069
942 _cEBK
999 _c59867
_d59867