000 03670cam a2200637Ii 4500
001 on1123216889
003 OCoLC
005 20220711203147.0
006 m o d
007 cr cnu|||unuuu
008 191017s2019 enk ob 001 0 eng d
040 _aDG1
_beng
_erda
_epn
_cDG1
_dOCLCF
_dUKMGB
_dN$T
_dRECBK
_dUKAHL
_dYDX
_dOCLCQ
_dOCLCO
_dUMI
015 _aGBB9H7555
_2bnb
016 7 _a019591140
_2Uk
019 _a1225940044
020 _a9781119671183
_q(electronic bk. ;
_qoBook)
020 _a1119671183
_q(electronic bk. ;
_qoBook)
020 _a9781119671220
_q(ePub ebook)
020 _a1119671221
020 _a9781119671152
_q(electronic bk.)
020 _a1119671159
_q(electronic bk.)
020 _z9781786303998
_q(print)
024 7 _a10.1002/9781119671183
_2doi
029 1 _aAU@
_b000066234431
029 1 _aUKMGB
_b019591140
035 _a(OCoLC)1123216889
_z(OCoLC)1225940044
037 _a9781119671220
_bWiley
041 1 _aeng
_hfre
050 4 _aQA76.9.N38
082 0 4 _a006.3/5
_223
049 _aMAIN
100 1 _aKaroui, Jihen,
_eauthor.
_94740
245 1 0 _aAutomatic detection of irony :
_bopinion mining in microblogs and social media /
_cJihen Karoui, Farah Benamara, Véronique Moriceau.
264 1 _aLondon, UK :
_bISTE, Ltd. ;
_aHoboken, NJ :
_bWiley,
_c2019.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aCognitive science series
505 0 _aFrom Opinion Analysis to Figurative Language Treatment -- Toward Automatic Detection of Figurative Language -- A Multilevel Scheme for Irony Annotation in Social Network Content -- Three Models for Automatic Irony Detection -- Towards a Multilingual System for Automatic Irony Detection -- Conclusion -- Categories of Irony Studied in Linguistic Literature.
504 _aIncludes bibliographical references and index.
588 0 _aOnline resource; title from PDF title page (John Wiley, viewed October 17, 2019).
520 _aIn recent years, there has been a proliferation of opinion-heavy texts on the Web: opinions of Internet users, comments on social networks, etc. Automating the synthesis of opinions has become crucial to gaining an overview on a given topic. Current automatic systems perform well on classifying the subjective or objective character of a document. However, classifications obtained from polarity analysis remain inconclusive, due to the algorithms' inability to understand the subtleties of human language. Automatic Detection of Irony presents, in three stages, a supervised learning approach to predicting whether a tweet is ironic or not. The book begins by analyzing some everyday examples of irony and presenting a reference corpus. It then develops an automatic irony detection model for French tweets that exploits semantic traits and extralinguistic context. Finally, it presents a study of portability in a multilingual framework (Italian, English, Arabic).
650 0 _aNatural language processing (Computer science)
_94741
650 0 _aData mining.
_93907
650 7 _aTECHNOLOGY & ENGINEERING
_xElectronics
_xGeneral.
_2bisacsh
_94742
650 7 _aData mining.
_2fast
_0(OCoLC)fst00887946
_93907
650 7 _aNatural language processing (Computer science)
_2fast
_0(OCoLC)fst01034365
_94741
655 4 _aElectronic books.
_93294
700 1 _aBenamara, Farah,
_eauthor.
_94743
700 1 _aMoriceau, Véronique,
_eauthor.
_94744
830 0 _aCognitive science series.
_94745
856 4 0 _uhttps://doi.org/10.1002/9781119671183
_zWiley Online Library
942 _cEBK
994 _aC0
_bDG1
999 _c68331
_d68331