000 06216cam a2200697 i 4500
001 on1040119423
003 OCoLC
005 20220711203215.0
006 m o d
007 cr |||||||||||
008 180611s2018 enk ob 000 0 eng
010 _a 2018028265
040 _aDLC
_beng
_erda
_cDLC
_dDG1
_dYDX
_dEBLCP
_dOCLCF
_dMERER
_dUAB
_dNLE
_dDLC
_dRECBK
_dN$T
019 _a1043756339
020 _a9781119263050
_q(ePub)
020 _a1119263050
020 _a9781119263043
_q(Adobe PDF)
020 _a1119263042
020 _z9781119263067 (hardcover)
020 _a9781119263081
020 _a1119263085
029 1 _aCHVBK
_b523034385
029 1 _aCHNEW
_b001015425
035 _a(OCoLC)1040119423
_z(OCoLC)1043756339
042 _apcc
050 1 0 _aTL152.8
072 7 _aTEC
_x009000
_2bisacsh
082 0 0 _a629.04
_223
049 _aMAIN
100 1 _aLiu, Hugh H. T.,
_eauthor.
_95317
245 1 0 _aFormation control of multiple autonomous vehicle systems /
_cHugh H.T. Liu, Bo Zhu.
250 _aFirst edition.
264 1 _aChichester, West Sussex, UK :
_bWiley,
_c2018.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references.
520 _a"Presents representative case studies in selected applications in space, aerial, and robotic systems domains. - Introduces an experimental platform of using laboratory three-degree-of-freedom helicopters with step by step instructions as an example and exercises throughout the book for illustration purposes. - Open Source example models and simulation codes will be provided Marketing description- Primary: Researchers and academics in robotics and unmanned systems looking at formation problems. These include mechanical engineers, aerospace engineers and electrical engineers. Graduate students in Control within ME, EE, and AE are also a target as a supplemental publication. Secondary: Industry engineers developing guidance systems for formation control systems and graduate students in mechanical, electrical, and aerospace engineering"--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher.
505 0 _aCover; Title Page; Copyright; Contents; Preface; List of Tables; List of Figures; Acknowledgments; Part I Formation Control: Fundamental Concepts; Chapter 1 Formation Kinematics; 1.1 Notation; 1.2 Vectorial Kinematics; 1.2.1 Frame Rotation; 1.2.2 The Motion of a Vector; 1.2.3 The First Time Derivative of a Vector; 1.2.4 The Second Time Derivative of a Vector; 1.2.5 Motion with Respect to Multiple Frames; 1.3 Euler Parameters and Unit Quaternion; Chapter 2 Formation Dynamics of Motion Systems; 2.1 Virtual Structure; 2.1.1 Formation Control Problem Statement.
505 8 _a2.1.2 Extended Formation Control Problem2.2 Behaviour-based Formation Dynamics; 2.3 Leader-Follower Formation Dynamics; Chapter 3 Fundamental Formation Control; 3.1 Unified Problem Description; 3.1.1 Some Key Definitions for Formation Control; 3.1.2 A Simple Illustrative Example; 3.2 Information Interaction Conditions; 3.2.1 Algebraic Graph Theory; 3.2.2 Conditions for the Case without a Leader; 3.2.3 Conditions for the Case with a Leader; 3.3 Synchronization Errors; 3.3.1 Local Synchronization Error: Type I; 3.3.2 Local Synchronization Error: TypeII.
505 8 _a3.3.3 Local Synchronization Error: TypeIII3.4 Velocity Synchronization Control; 3.4.1 Velocity Synchronization without a Leader; 3.4.2 Velocity Synchronization with a Leader; 3.5 Angular-position Synchronization Control; 3.5.1 Synchronization without a Position Reference; 3.5.2 Synchronization to a Position Reference; 3.6 Formation via Synchronized Tracking; 3.6.1 Formation Control Solution 1; 3.6.2 Formation Control Solution 2; 3.7 Simulations; 3.7.1 Verification of Theorem 3.12; 3.7.2 Verification of Theorem 3.13; 3.7.3 Verification of Theorem 3.14; 3.8 Summary; Bibliography.
505 8 _aPart II Formation Control: Advanced TopicsChapter 4 Output-feedback Solutions to Formation Control; 4.1 Introduction; 4.2 Problem Statement; 4.3 Linear Output-feedback Control; 4.4 Bounded Output-feedback Control; 4.5 Distributed Linear Control; 4.6 Distributed Bounded Control; 4.7 Simulations; 4.7.1 Case 1: Verification of Theorem 4.1; 4.7.2 Case 2: Verification of Theorem 4.5; 4.8 Summary; Chapter 5 Robust and Adaptive Formation Control; 5.1 Problem Statement; 5.2 Continuous Control via State Feedback; 5.2.1 Controller Development; 5.2.2 Analysis of Tracker ui0.
505 8 _a5.2.3 Design of Disturbance Estimators5.2.4 Closed-loop Performance Analysis; 5.3 Bounded State Feedback Control; 5.3.1 Design of Bounded State Feedback; 5.3.2 Robustness Analysis; 5.3.3 The Effect of UDE on Stability; 5.3.4 The Effect of UDE on the Bounds of Control; 5.4 Continuous Control via Output Feedback; 5.4.1 Design of ui0 and d^i; 5.4.2 Stability Analysis; 5.5 Discontinuous Control via Output Feedback; 5.5.1 Controller Design; 5.5.2 Stability Analysis; 5.6 GSE-based Synchronization Control; 5.6.1 Coupled Errors; 5.6.2 Controller Design and Convergence Analysis.
650 0 _aAutonomous vehicles
_vCase studies.
_95318
650 0 _aFormation control (Machine theory)
_vCase studies.
_95319
650 0 _aSynchronization
_vCase studies.
_95320
650 0 _aMotion control devices
_vCase studies.
_95321
650 7 _aAutonomous vehicles.
_2fast
_0(OCoLC)fst01909261
_95322
650 7 _aMotion control devices.
_2fast
_0(OCoLC)fst01027082
_95323
650 7 _aSynchronization.
_2fast
_0(OCoLC)fst01141085
_94474
650 7 _aSCIENCE / System Theory.
_2bisacsh
_95324
655 7 _aCase studies.
_2fast
_0(OCoLC)fst01423765
_95325
655 4 _aElectronic books.
_93294
700 1 _aZhu, Bo
_c(Mechanical engineer),
_eauthor.
_95326
776 0 8 _iPrint version:
_aLiu, Hugh H. T., author.
_tFormation control of multiple autonomous vehicle systems
_bFirst edition.
_dHoboken, NJ : Wiley, 2018
_z9781119263067
_w(DLC) 2018016968
856 4 0 _uhttps://doi.org/10.1002/9781119263081
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c68456
_d68456