000 | 05464cam a2200625Ka 4500 | ||
---|---|---|---|
001 | on1029444645 | ||
003 | OCoLC | ||
005 | 20220711203236.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 180323s2018 enk ob 001 0 eng d | ||
040 |
_aYDX _beng _epn _cYDX _dN$T _dEBLCP _dN$T _dDG1 _dNLE _dRECBK _dMERER _dUAB _dUPM _dOCLCF _dOCLCQ _dDEBBG _dOCLCQ |
||
019 |
_a1029054967 _a1029339708 _a1029477911 _a1029569895 _a1029646868 |
||
020 |
_a9781119516507 _q(electronic bk.) |
||
020 |
_a1119516501 _q(electronic bk.) |
||
020 |
_a9781119452836 _q(electronic bk.) |
||
020 |
_a111945283X _q(electronic bk.) |
||
020 | _z1786302489 | ||
020 | _z9781786302489 | ||
029 | 1 |
_aGBVCP _b1019260599 |
|
029 | 1 |
_aAU@ _b000062299252 |
|
029 | 1 |
_aCHVBK _b516429574 |
|
029 | 1 |
_aCHNEW _b001003233 |
|
035 |
_a(OCoLC)1029444645 _z(OCoLC)1029054967 _z(OCoLC)1029339708 _z(OCoLC)1029477911 _z(OCoLC)1029569895 _z(OCoLC)1029646868 |
||
050 | 4 | _aTJ213 | |
072 | 7 |
_aTEC _x009000 _2bisacsh |
|
082 | 0 | 4 |
_a629.8 _223 |
049 | _aMAIN | ||
100 | 1 |
_aMbihi, Jean. _95706 |
|
245 | 1 | 0 |
_aAnalog automation and digital feedback control techniques / _cJean Mbihi. |
260 |
_aLondon : _bISTE Ltd. ; _aHoboken, NJ : _bJohn Wiley & Sons, Inc., _c2018. |
||
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aSystems and industrial engineering series | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aCover; Half-Title Page; Title Page; Copyright Page; Contents; Preface; Introduction; PART 1. Analog Feedback Control Systems; 1. Models of Dynamic Processes; 1.1. Introduction to dynamic processes; 1.1.1. Definition, hypotheses and notations; 1.1.2. Implications of hypotheses; 1.1.3. Dynamic model: an automation perspective; 1.2. Transfer functions; 1.2.1. Existence conditions; 1.2.2. Construction; 1.2.3. General structure of a transfer function; 1.2.4. Tools for the analysis of the properties of transfer functions; 1.2.5. First- and second-order transfer functions; 1.3. State models. | |
505 | 8 | _a1.3.1. Definition1.3.2. Illustrative example; 1.3.3. General structure of the state model; 1.4. Linear state models with constant parameters; 1.4.1. Linearization-based construction; 1.4.2. Structure of a linear state model with constant parameters; 1.4.3. Properties of a model without pure input delay (T0 = 0); 1.5. Similarity transformation; 1.6. Exercises and solutions; 2. Experimental Modeling Approach of Dynamic Processes; 2.1. Introduction to experimental modeling; 2.1.1. Problem statement; 2.1.2. Principle of experimental modeling; 2.1.3. Experimental modeling methodology. | |
505 | 8 | _a2.2. Step response-based modeling2.2.1. Model of order 1; 2.2.2. Under-damped model of order 2 (Îℓ <1); 2.2.3. Damped model of order â#x89;Æ 2 (Strejc method); 2.3. Frequency response-based modeling; 2.4. Modeling based on ARMA model; 2.4.1. ARMA model; 2.4.2. Parameter estimation of an ARMA model; 2.5. Matlab-aided experimental modeling; 2.6. Exercises and solutions; 3. Review of Analog FeedbackControl Systems; 3.1. Open-loop analog control; 3.1.1. Principle; 3.1.2. Open-loop control; 3.2. Analog control system; 3.3. Performances of an analog control system. | |
505 | 8 | _a3.3.1. Closed-loop transfer functions3.3.2. Performance quantities; 3.4. Simple analog controllers; 3.5. PID/PIDF controllers; 3.5.1. Structure and role of the parameters of a PID/PIDF controller; 3.5.2. Zieglerâ#x80;#x93;Nichols methods for parameter calculation; 3.5.3. Calculation of parameters by pole placement; 3.5.4. Direct calculation of optimal PID parameters; 3.5.5. LQR-based indirect calculation of optimal PID parameters; 3.5.6. Implementation of analog controllers; 3.6. Controllers described in the state space; 3.6.1. Principle and block diagram of a linear state feedback. | |
505 | 8 | _a3.6.2. Techniques for calculating the state feedback gain3.6.3. Integral action state feedback; 3.6.4. State feedback with integral action and observer; 3.6.5. State feedback with output error compensator; 3.7. Principle of equivalence between PID and LQR controllers; 3.7.1. Proof of the equivalence principle; 3.7.2. Equivalence relation; 3.7.3. Case study; 3.8. Exercises and solutions; PART 2. Synthesis and Computer-aided Simulation of Digital Feedback Control Systems; 4. Synthesis of Digital Feedback Control Systems in the Frequency Domain; 4.1. Synthesis methodology. | |
520 | _aThis book covers various modern theoretical, technical, practical and technological aspects of computerized numerical control and control systems of deterministic and stochastic dynamical processes. | ||
650 | 0 |
_aAutomation. _92392 |
|
650 | 0 |
_aAutomatic control. _93672 |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING _xEngineering (General) _2bisacsh _94639 |
|
650 | 7 |
_aAutomatic control. _2fast _0(OCoLC)fst00822702 _93672 |
|
650 | 7 |
_aAutomation. _2fast _0(OCoLC)fst00822786 _92392 |
|
655 | 4 |
_aElectronic books. _93294 |
|
776 | 0 | 8 |
_iPrint version: _aMbihi, Jean. _tAnalog automation and digital feedback control techniques. _dLondon : ISTE Ltd. ; Hoboken, NJ : John Wiley & Sons, Inc., 2018 _z1786302489 _z9781786302489 _w(OCoLC)1027120325 |
830 | 0 |
_aSystems and industrial engineering series. _95270 |
|
856 | 4 | 0 |
_uhttps://doi.org/10.1002/9781119452836 _zWiley Online Library |
942 | _cEBK | ||
994 |
_a92 _bDG1 |
||
999 |
_c68520 _d68520 |