000 09376cam a2200661 i 4500
001 on1004981800
003 OCoLC
005 20220711203309.0
006 m o d
007 cr |||||||||||
008 170928t20182018njua ob 001 0 eng
010 _a 2017046745
040 _aDLC
_beng
_erda
_epn
_cDLC
_dOCLCF
_dOCLCO
_dN$T
_dYDX
_dEBLCP
_dDG1
_dYDX
_dOCLCO
_dCNCGM
_dUPM
_dMERER
_dOCLCQ
_dUAB
_dOCLCQ
_dRECBK
_dOCLCQ
_dWYU
_dLVT
020 _a9781119277330
_q(electronic book)
020 _a1119277337
_q(electronic book)
020 _a9781119277323
_q(electronic book)
020 _a1119277329
_q(electronic book)
020 _z9781119277279
_q(epub)
020 _z1119277272
_q(epub)
020 _z9781119277286
_q(hardcover)
029 1 _aAU@
_b000060876052
029 1 _aCHNEW
_b000979930
029 1 _aCHVBK
_b507395808
035 _a(OCoLC)1004981800
042 _apcc
050 1 4 _aQC243
_b.B38 2018
072 7 _aSCI
_x001000
_2bisacsh
082 0 0 _a534.0285
_223
049 _aMAIN
100 1 _aBergman, David R.,
_eauthor.
_96245
245 1 0 _aComputational acoustics :
_btheory and implementation /
_cDavid R. Bergman.
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons, Inc.,
_c2018.
264 4 _c©2018
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aWiley series in acoustics, noise and vibration
504 _aIncludes bibliographical references and index.
588 0 _aOnline resource; title from digital title page (viewed on January 17, 2018).
520 _aCovers the theory and practice of innovative new approaches to modelling acoustic propagation There are as many types of acoustic phenomena as there are media, from longitudinal pressure waves in a fluid to S and P waves in seismology. This text focuses on the application of computational methods to the fields of linear acoustics. Techniques for solving the linear wave equation in homogeneous medium are explored in depth, as are techniques for modelling wave propagation in inhomogeneous and anisotropic fluid medium from a source and scattering from objects. Written for both students and working engineers, this book features a unique pedagogical approach to acquainting readers with innovative numerical methods for developing computational procedures for solving problems in acoustics and for understanding linear acoustic propagation and scattering. Chapters follow a consistent format, beginning with a presentation of modelling paradigms, followed by descriptions of numerical methods appropriate to each paradigm. Along the way important implementation issues are discussed and examples are provided, as are exercises and references to suggested readings. Classic methods and approaches are explored throughout, along with comments on modern advances and novel modeling approaches.' -Bridges the gap between theory and implementation, and features examples illustrating the use of the methods described -Provides complete derivations and explanations of recent research trends in order to provide readers with a deep understanding of novel techniques and methods -Features a systematic presentation appropriate for advanced students as well as working professionals -References, suggested reading and fully worked problems are provided throughout' An indispensable learning tool/reference that readers will find useful throughout their academic and professional careers, this book is both a supplemental text for graduate students in physics and engineering interested in acoustics and a valuable working resource for engineers in an array of industries, including defense, medicine, architecture, civil engineering, aerospace, biotech, and more.
505 0 _aIntro -- Title Page -- Copyright Page -- Contents -- Series Preface -- Chapter 1 Introduction -- Chapter 2 Computation and Related Topics -- 2.1 Floating-Point Numbers -- 2.1.1 Representations of Numbers -- 2.1.2 Floating-Point Numbers -- 2.2 Computational Cost -- 2.3 Fidelity -- 2.4 Code Development -- 2.5 List of Open-Source Tools -- 2.6 Exercises -- References -- Chapter 3 Derivation of the Wave Equation -- 3.1 Introduction -- 3.2 General Properties of Waves -- 3.3 One-Dimensional Waves on a String -- 3.4 Waves in Elastic Solids -- 3.5 Waves in Ideal Fluids -- 3.5.1 Setting Up the Derivation -- 3.5.2 A Simple Example -- 3.5.3 Linearized Equations -- 3.5.4 A Second-Order Equation from Differentiation -- 3.5.5 A Second-Order Equation from a Velocity Potential -- 3.5.6 Second-Order Equation without Perturbations -- 3.5.7 Special Form of the Operator -- 3.5.8 Discussion Regarding Fluid Acoustics -- 3.6 Thin Rods and Plates -- 3.7 Phonons -- 3.8 Tensors Lite -- 3.9 Exercises -- References -- Chapter 4 Methods for Solving the Wave Equation -- 4.1 Introduction -- 4.2 Method of Characteristics -- 4.3 Separation of Variables -- 4.4 Homogeneous Solution in Separable Coordinates -- 4.4.1 Cartesian Coordinates -- 4.4.2 Cylindrical Coordinates -- 4.4.3 Spherical Coordinates -- 4.5 Boundary Conditions -- 4.6 Representing Functions with the Homogeneous Solutions -- 4.7 Greeńs Function -- 4.7.1 Greeńs Function in Free Space -- 4.7.2 Mode Expansion of Greeńs Functions -- 4.8 Method of Images -- 4.9 Comparison of Modes to Images -- 4.10 Exercises -- References -- Chapter 5 Wave Propagation -- 5.1 Introduction -- 5.2 Fourier Decomposition and Synthesis -- 5.3 Dispersion -- 5.4 Transmission and Reflection -- 5.5 Attenuation -- 5.6 Exercises -- References -- Chapter 6 Normal Modes -- 6.1 Introduction -- 6.2 Mode Theory -- 6.3 Profile Models.
505 8 _a6.4 Analytic Examples -- 6.4.1 Example 1: Harmonic Oscillator -- 6.4.2 Example 2: Linear -- 6.5 Perturbation Theory -- 6.6 Multidimensional Problems and Degeneracy -- 6.7 Numerical Approach to Modes -- 6.7.1 Derivation of the Relaxation Equation -- 6.7.2 Boundary Conditions in the Relaxation Method -- 6.7.3 Initializing the Relaxation -- 6.7.4 Stopping the Relaxation -- 6.8 Coupled Modes and the Pekeris Waveguide -- 6.8.1 Pekeris Waveguide -- 6.8.2 Coupled Modes -- 6.9 Exercises -- References -- Chapter 7 Ray Theory -- 7.1 Introduction -- 7.2 High Frequency Expansion of the Wave Equation -- 7.2.1 Eikonal Equation and Ray Paths -- 7.2.2 Paraxial Rays -- 7.3 Amplitude -- 7.4 Ray Path Integrals -- 7.5 Building a Field from Rays -- 7.6 Numerical Approach to Ray Tracing -- 7.7 Complete Paraxial Ray Trace -- 7.8 Implementation Notes -- 7.9 Gaussian Beam Tracing -- 7.10 Exercises -- References -- Chapter 8 Finite Difference and Finite Difference Time Domain -- 8.1 Introduction -- 8.2 Finite Difference -- 8.3 Time Domain -- 8.4 FDTD Representation of the Linear Wave Equation -- 8.5 Exercises -- References -- Chapter 9 Parabolic Equation -- 9.1 Introduction -- 9.2 The Paraxial Approximation -- 9.3 Operator Factoring -- 9.4 Pauli Spin Matrices -- 9.5 Reduction of Order -- 9.5.1 The Padé Approximation -- 9.5.2 Phase Space Representation -- 9.5.3 Diagonalizing the Hamiltonian -- 9.6 Numerical Approach -- 9.7 Exercises -- References -- Chapter 10 Finite Element Method -- 10.1 Introduction -- 10.2 The Finite Element Technique -- 10.3 Discretization of the Domain -- 10.3.1 One-Dimensional Domains -- 10.3.2 Two-Dimensional Domains -- 10.3.3 Three-Dimensional Domains -- 10.3.4 Using Gmsh -- 10.4 Defining Basis Elements -- 10.4.1 One-Dimensional Basis Elements -- 10.4.2 Two-Dimensional Basis Elements -- 10.4.3 Three-Dimensional Basis Elements.
505 8 _a10.5 Expressing the Helmholtz Equation in the FEM Basis -- 10.6 Numerical Integration over Triangular and Tetrahedral Domains -- 10.6.1 Gaussian Quadrature -- 10.6.2 Integration over Triangular Domains -- 10.6.3 Integration over Tetrahedral Domains -- 10.7 Implementation Notes -- 10.8 Exercises -- References -- Chapter 11 Boundary Element Method -- 11.1 Introduction -- 11.2 The Boundary Integral Equations -- 11.3 Discretization of the BIE -- 11.4 Basis Elements and Test Functions -- 11.5 Coupling Integrals -- 11.5.1 Derivation of Coupling Terms -- 11.5.2 Singularity Extraction -- 11.5.3 Evaluation of the Singular Part -- 11.5.3.1 Closed-Form Expression for the Singular Part of K -- 11.5.3.2 Method for Partial Analytic Evaluation -- 11.5.3.3 The Hypersingular Integral -- 11.6 Scattering from Closed Surfaces -- 11.7 Implementation Notes -- 11.8 Comments on Additional Techniques -- 11.8.1 Higher-Order Methods -- 11.8.2 Body of Revolution -- 11.9 Exercises -- References -- Index -- EULA.
650 0 _aSound-waves
_xMeasurement.
_96246
650 0 _aSound-waves
_xComputer simulation.
_96247
650 0 _aSound-waves
_xMathematical models.
_96248
650 7 _aSCIENCE
_xAcoustics & Sound.
_2bisacsh
_96249
650 7 _aSound-waves
_xComputer simulation.
_2fast
_0(OCoLC)fst01127079
_96247
650 7 _aSound-waves
_xMathematical models.
_2fast
_0(OCoLC)fst01127084
_96248
650 7 _aSound-waves
_xMeasurement.
_2fast
_0(OCoLC)fst01127085
_96246
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aBergman, David R.
_tComputational acoustics.
_dHoboken, NJ : John Wiley & Sons, 2018
_z9781119277286
_w(DLC) 2017036469
830 0 _aWiley series in acoustics, noise and vibration.
_96250
856 4 0 _uhttps://doi.org/10.1002/9781119277323
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c68632
_d68632